
AD—A07O 960 GENERAL ELECTRIC CO SUNNYVALE CALIF F/s 9/2
A SIMULATION MOU€LING APPROACH TO LRIO€RSTAIhOING Tt€ SOcTUAR E DE—€TC (U)

UNCLASSIFIED
A MCCALL . G y WOWS . A H STOt€ Ft962Q—7fl— C~ OO54

ki
_

_ _ _

UI

fl!UU _ nIL!_
I flhII U_UN~~Q
I B]__

O ~~. L i I

_ ___

L

I.’ ~ ~:
_________________ 8

Hffl ’ 2
~ QI(U~ (~~‘•6

I 1 L I I I I

~~~~~~~~~~~~~~~



• 
~~~~~~~~~ 

79 d . 0 7 7 6

~~~~~~~~~~~O J979

/

1- GENERAL • ELECTRIC

~~~~~~~~~~~~~
. ~~~~ ~~~~~ :~~

. 1

AiR FORCE OFFICE OF SC iEN T IF i C RESJ~ARCH (APSC)

NOTICE OF TRAN SMITT AL TO DDC

This techniC~il ‘~~~:-~~
:t ~~~ L~~~~1i r e v iewed and is

approved for p~~ 1~~: r~ iecm u 1A ~ AFR 190—12 (lb).

DiStTibUtt01~
i~ uii 1im ~.ted.

A. D. 3L~0SE
Technical informati01~

Off icer

~~~~~~ ~~~~~~~~~~~~~~



—— ~~~~~~~~~~~~~~~ —--•• -- • - -  -- —

~ C L A S ’~ , ,)~ 
1o~~’, PA(, E (I4),en ~.,. f n :er.d)

EPOt’~T DOCUMENTATION PAGE

( r r .uu~~~~~~~~ 

,Ø
/ 

7 
~~~ 2 GO VT ACCESSION NO. 3 RECI p I ENT ’ S C A T A L O O  MuMM ER

ITLE (wd SubIHI.) 5 T Y P E OF REPORT & P ER i O D CO V E R E D

(
~~~~~~~~~~~~AT1ON JODELIN C APPROAC}I TO ~~NDERSTAND- ~~~

7
~~~~~ai ~~ 

_ _ _ _ _

~ r INC THE~~ OFNARE~~~~VEL0PMENT PROCESS~
~~~~ £RF R . M 4 M G O~~f*L i~J M T t M. U M . C R

7. AUTHOR(.) _______ S. C O N T R A C T  OR G R A N T  NUMB ER(a)

~~~~~
, \ J.A.7McCa ll , G .Y. f ~ ong~?~

7A .H ./ St o~~Tl ,
‘

~~~~~~ 
a s ~

,__
~ —~

I ç~ /
F4962/~78~ C~~/54

eq
~ 

9. PERFORMING O R G A N I Z A T I O N  NAME AND ADDRESS IC. P R O G R A M  EL E M E N T . P R O J E C T  T A S K
A 6 WOR K. UNIT N SInformat ion  Systems Program - • /C 

Sunnyvale , CA 94086 6l10~~~~~~~~ JA2 
/ 

~~~ 
(

C i~~. CONTROLLING OFFICE NAME AND ADDRESS ‘
~~~~

~~~ Ai r Force O f f i c e of Scientif ic Research/NM I ) Jur~~~~ 79
Boiling AFB , Washi ngton , D.C. 20332 “-J......... 4 NUM R O ~~~W~~GES

- C ______________ 96
4 M O N I T O R I N G A G E N C Y NAME & ADDRESS I dlii. I l i n Oif

~ce? 15 . S E C U R I T Y CLASS. (of thu ‘.port)

/

~~
~~~~~ j UNCLASSIFIED 

______-

~~~~~~~

• •‘~~~~~ ‘/
/ 0 0 ‘1

ISa . D E C L A S S I F I C A T I O f 4 ~. O W N G R A O I N~,

1 6. D ISTRIB UT ION S T A T E M E N T (of thu Report)

Approved for public release; distribution unlimited .

17 . DI STRIBUTION ST. 4 E NT (of T.b.t,.~s .nt.,.d In Block 20, Ii dlii.r.nS from R.port)

IS. S U P P L E M E N T A R Y TES

IS. K EY W ORDS (Conllnu. on revere . •id. ii n.c .s .ary and id e n t I fy by block numb .r)

S o f t w a r e Development Process , Computer System S imula t ion , Sof tware M anagem ent .
• . Cost Estima tion.

20 A I ACT (Cont inue on r.v.re. aide If n.cea..ry end Identif y by block numbe r)
his r eport , prepared for the Air Force O f f i c e of Scient if ic Researc h

(AFOSR) , desc ribes an assessment of the feasib i l i ty of u t i l izing s imulat ion
techniques to aid in the management of large—scale software developments. A
model of the sof tware development process was constructed~ s ta te — of—the—a rt
prototype simulation tools used , and an exper iment conducted to demonstrate the
feas ib i l i ty . A result of this e f f o r t is the concept of a Software Development
Process Simulator which could be utilized to assist in projec t p lann ing (cost

• estimation) and project control (progress status assessment).

DD I~~~~~~~ IS 1473 UNCLA SSIFIED
—

•~~~~~— ~----- .-~ .~~~~~ ~~~~~~~~~~~~~~~~ — — • .~~~~~ . ~~~~~~~~~~~
-

A SIMULAT ION MODELING APPROACH
TO UNDERSTANDING THE

SOFTWARE DEVELOPMENT PROCESS

J. A , MCCALL /~: ~~~~~~~~~~~

A. H. STONE / .-

G. Y. WoN G J~// . .~ ~~~~~~~~~~

J19 -t /
,.j

- . 9 17/

JUNE 1979

PREPARED FOR :

DIRECTOR) MATHEMATICAL AND INFORMATION SCIENCES
AIR FORCE OFF ICE OF SCIENTIF IC RESEARCH

ATTN : NM
BU I LDING ~~ BaLLING AFB

WASH INGTON ,IDC 20332

• GENERA: ELECTRIC COMPANY: ,~~~. . ~~~~~~~~~~~~~~~~~~~~~~~

~~ INFORMAT ION ~~~~~~~~~~~~~~~~~~~~~~ :-.~ ~~~~~~~~~

~5O PERSIAN DRIVE
\ ç ~~~~~~~~~~~~~~~~~~~

‘SUNN~RALEJ CALIFORNIA 9’4O86\~~~~~

I~1

-
~~~

t

FOREWORD

This document is the fina l technic al report for the Software Development
Process Simulation Study , contract number F49620-78-C-0054. The contract
was performed in support of the Air Force Office of Scientific Research ,
(AFOSR), Directorate of Mathematical and Information Science.

The report was written by G. Wong , A. Stone , and J. McCall of the Sunnyvale
Operations , Information Systems Programs , Genera l Electric Company . The
program manager for the study was G. Walters. S. Ama ral prepared the final
documen tati on.

Technical guidance was provided by Lt. Col . G. McKemie , AFOSR program
manager. Technical discussion s were also held with R. Weber and A. Sukert ,
RADC , and Maj. N. McQuage and CPT . J. Duquette , ESD.

-•

_ _ _ _  

\~
-
~~r •~~

________ 

1~ , ~~~~—•-———- -.~~~~~~~~
. •

.
‘ -1.1- — 

—

- 

, ~~~~~~~~~ 
- :  -

~~~~ . ~~~~~~~
- . .,‘.‘ l. ’ • - ,-, I u)1~

•
~~~ ~~-‘



- - - -  ___________________________

TABLE OF CONTENTS
C

Section

1 .0 INTRODUCTION/EXECUTIVE SUMMARY 1-1

1 .1 Task Objectives 1- 1

1 .2  Report Overv iew 1-2

1 .3 Sumary of Findings 1-4

2.0 INTRODUCTION 2-1

2.1 Background 2-1

2.2 On Models 2-2

2.3 Analytic Modeling Approach 2-3

2.4 Simulation Modeling Approach 2-6

3.0 DEVELOPMENT OF SIMULATION MODEL 3-1

3.1 Orientation of the Simulation Model 3-1

3.2 Level of Model Detail 3-1

3.3 Model Formulation 3-3

3.4 Model Inputs 3-10

3.5 Model Outputs 3-11

4.0 DECOMPOSITION OF THE SOFTWARE DEVELOPMENT PROCESS .   4-1
4.1 Initial Concepts 4-1

4.2 Approach to Decomposing the Software
Development Process 4-8

4.3 Description of Model 4-13

4.4 Model Utility 4-29

5.0 DEVELOPMENT OF A SIMULATOR 5-1

5.1 Prototype Design Concepts 5-1

5.2 Prototype Imp l ementation 5-3

5.3 Purpose of Ex periment 5-9

5.4 Description of the Experiment 5-9

4



- ~~~
.— •--- .--

TABLE OF CONTENTS (Conti nued )

Section P~g~
5.5 Limitations of the Experiment 5-12
5.6 Results of the Experiment 5-16

6.0 CONCLUSIONS 6-1
6.1 Sunr%ary of Significant Results 6-1
6.2 Eva luation of Experiment 6-2
6.3 Topics for Further Investigation 6-4

7.0 BIBLIOGRAPHY 7-1

Jr

4r,, ii 

--~~~~~~ -- -~~~~~~ - - - _~“ -- - • - -- -



p.,— -
~~~~~~~ 

- — —,

~~~~~ 

— •

~

-‘- ------- -- -V

• LIST OF FIGURES

Figure
Number Page

3-1 Activity Progression Model Concepts 3-4

3-2 Activity Progression Model Processes 3-5

3-3 Product Progression Model Concepts 3-6

3-4 Product Progression Model Processes 3-7
3-5 Combined Activity/Product Progression Model 3-8

4-1 Traditional Software Development Process Model 4-2

4-2 Current Cost Estimation Technique ’ s Depiction
Software Development Process 4-5

4-3 Software Development Process With Feedback Paths . .  . 4-6

4-4 Timeline Representation of Software
Development Process 4-7

4-5 Software Development Process Concept 4-9
4-6 Software Development Process Model 4-14

4-7 Activity Model Concept 4-27

5—1 Prototype/Tools Relationship 5-3
5-2 Path Expression Parser/Interpreter Overview 5-4

5—3 Backus-Naur-Form for Path Expression Language 5-7

5-4 Path Expression Language Example 5-8
5-5 Incremental Subsytem Development 5-11

5-6 Process Flow 5-13

5-7 Path Expression 5-14

5-8 Experiment Results 5-17

1-t i



-. — •—~~ V V - ~~~~~~~~~~~~ -— - -V•~ ~~~V ~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~ - — ~~~~ ——  —V -~~

LIST OF TABLES
4k

Tabl e
Number Page

3-1 Anticipated Model Inputs 3-10
3-2 Anticipated Model Outputs 3-11
4-1 DecomDositlon Methodoloay 4-11
4— 2 Act ivi ty Explanations 4-15
4-3 Personnel Resources 4-23
4-4 Factors Which Affect Act iv i t ies 4-26
4-5 Utility of the Software Development Process Simulator . 4-30

6-1 Conclusions Matrix 6-1

I

I,. .

E
iv

~~~~~-- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-- —-V- --- -- ~~~~~~~~- - V --~~~~~~
- - - - - - V  - - - -~~~- - - -

- —- —--- -—

SECTION 1

EXECUTIVE SUMMARY

1 .1 TASK OBJECTIVES
Si gni ficant progress has been made during the last few years in identif y i n g

the problems and comp l exities involved with the development of software
systems and providing techniques to overcome these obstacles. Severa l
major conferences and workshops in recent years hi ghlight the work tha t
has been done in the research comunity ([NATO 69], [PROC 73], [FIND 75],
[P~’CuC 75]; see Biblio graphy ,Sectionfl . What has evolved is a more disci-
pline d enviro nment for the production of software . Forma l specification ,
design , and implementation methodologies are bei ng developed . More mile-
stones and visible software products during the development phase have been
identified . Software support tools have become more sophisticated in
providing assistance in the design and development of software. Considerable
error and cost data have been collected and a better understanding of the
software development environment is evolving . Cost , productivity , and
reliability studies add to this understanding and provide data for predic -
tion and estimation. The factors in software quality and associated metrics

~tre bei ng studied to obtain more quantita tive measurements of the quality
of a software product. Demonstration projects are bei ng undertaken to
prove the effectiveness of new techniques.

All of these R&D efforts contribute toa more disciplined and structured
development process. This discipline and structure lends itself to more
effective management. Most of the tools and techniques tha t have resulted
from these R&D efforts Support micro -level activities within the software
development process. Few assist in the management of the entire process.
The goal of this proposed effort is to address this void.

A potential management tool , made possible by the more disciplined
approaches taken to software development , is a simulation model of the

C
1— 1

— ---V - • - ~-- 
— i. - _~~~~~~~~~., _ 

-.--•—--—--- -‘
~
--—-V - -- V 

~~~~~~~~ — — • — —— ----- • --


develooment process. Simulation mode ls t radi t ional ly hav2 been used by
management for analyses such as system desi gn studies , tradeoff analyses ,

performance assessments , a~d impact analyses. A model of the software
development process would facilitate these same types of ana l yses of the
development effort itself. The analyses supported by such a tool would

span both management planning (cost estimation) and control (progress and
impact assessment).

The initial step toward developing a simulation tool to aid in the manage-
ment of a software development involves develo ping the concept of such a
tool and assessing the feasibility of using simulation techniques to con-

struct a model of the software development process. This report describes
the results of this initial step. Specifically, under contract number
F-49620-78-C-0054, sponsored by the Air Force Office of Sc i entific Researc h ,

the objectivesof this study were to:

1) Determine the feasibility of apply ing simulation techniques to
modelling the software development process.

2) Describe the software development process in a manner conducive

to developing a simulation model .
3) Provide insights into modelling specific aspects of the software

development process.
4) Discuss the potential benefits and use of such •~ model .

1 .2 REPORT OVERVIEW
This report describes the research conducted to accomplish the objectives
described above. The report is organi .ed as follows :

Section 1 descri bes the task objectives , provides an outline of the report ,
and suninarizes the findings of the research task.

Section 2 provides a brief introduction to cost estimation techniques ,

presents current ana lyti c models , and compares the analytic approaches to

a simulation approach. This section provides the mot ivation for assessing

______________ V • . ~~~~~~ VV_ ~~~~~~~~~~~
__

_
~ _ .%___.._ — - --‘---- - - ---~~~~—-- ~~. F ~~~~~~~~~~

--— -V. ~~~~~ —.-V-— -~~~~~- — — - -

Jr

the feasibility of simulation techniques.

Section 3 expands upon the simulation approach to modelling the software
development process. The orientation of the model is discussed and its

anticipated inputs and outputs. Al so , in this section our conceptua l
approaches to modelling the software dev-~lopment process are described
including how the level of detail at which to model is determined .

Section 4 contains the model description , the decomposition of the soft-

ware development process into ictivities , products , and influencing
parameters is presented . Our specific concepts of modell ing the activi-
ties and the utility of the model are also described .

Section 5 provides a demonstration of some of our concepts. A simplified
model of a software development is constructed and simulated using some
prototype simulation tools. The simplifi ed model was constructed to
represent a past Ai — Force development and the simulated results are
compared to the actual results. The design concepts of the simulation
tools are described , as well as the details of the demonstration experiments.

Section 6 provides detailed conclusions of the research study and an
identification of follow-on research that should be conducted .

Section 7 provides an extensive list of references used in the study . The
references have been organized according to the following categories:

• Cost Estimation

• Software Project Management

• Simulation

• Others

1— 3

IIII.V_ —_ V-_- ----- __---_
~

-_ - - —-V — V — — ---V.- —-- --=~~~ ~~~~~~~~~~~~

1. 3 SUMMARY OF FINDINGS
The basic findings of the study are as follows :

• Simulation techniques can be utilized and provide very beneficial
insights into understand ing and managing the software development
process. The major advantages of a simulation model over analytic
model s are: (1) it provides better visibility/understanding because
it is more detailed and models the actua l processes being performed
and, (2) it is more flexible, allowing the model to be tailored to
the specific development. The simulation modelling approach is -
sti ll dependent on data collec tion as anal ytic techn iques have
been. One advantage, with respect to data collection , is that the
simulation model allows you to test your assumptions about what
is going on in the development , whereas anal ytic models do not
provide that degree of visibility into the process and , therefore,
rely strictly on past data .

• The level of detail at which the model is developed is critical to
its effectiveness. We decided to model at a team-level to avoid
the great variances found in individuals ’ performances . One of the
biggest problems in past modelling and cost estimation techniques
is the inattention paid to the products produced during develop-
ments and their quality . A software development in which little

effort is spent during design (and , therefore, has a poor design)
will have much more effort spent during implementation and test.
These i nterphase dependencies were identified and could not be

accurately model led by regression techniques in a study for the
Electronic Systems Division [GRAy 76]. Our approach to includ ing
quality considerations in the model and utilizing these considera-

tions to impact the effort required to perform certain activities
is an attempt to model phenomenon . The activity progression and
product progression model concepts are presented in Section 3.

• The description of a detailed Software Development Process Model
provides ininediate benefit to managers , as well as , establishing

1-4

- - - - — - -—- ---- -- VV.-. - - — —-VV. - — -- - V - —___

-V. -- V~~~~~ _ -V~~~~•_ — — — - —— - — — -V— ——~~~~~~
- - -V . V.— - - -

~~~~~~

a framework for simulations. It is possible to orient the
simulation model to support both planning and control functions
of management. The simulation approach is more supportive of both
phases that the analytic approach because it represents the soft-
ware development process in more detail. The development process
was decomposed into 51 generic activities. Subsets of these acti-
vities can be selected and interconnected to represent any specific
development effort. The activities described are generally those
activities performed by the development organization . Formal 

-

contractor reviews are also identified . Extension of the model to
include other acquisition office activities ([GORD 78], [COSG 78])
would require simply adding activity model s representing these
activities.

• The prototype simulation tools which support this process of
selecting and interconnecting the activities are described and
demonstrated in Section 5. A concept of using path expressions to
accomplish this was developed during this research project. The
prototype simulation tool s identified sol ve user interface , effi-
ciency , and process modelling problems normally associated with
traditional simulations.

The concepts that evolved during the study , and the very good resu lt s
of the simulation experiment provide the necessary support to assess

that simulating the software development process is feasible and con-
— 

siderable worthwhile information can be gained from this approach. In

the experiment , a past development was modelled and the simulated

results were within 4.98% of the actual results.

Further work is necessary , since this was a feasibility study . Develop-

ment of the simulator and experimentation have been proposed in an

overall research plan. The prototype tools developed during this study

provide an excellent starting point for the development of the simulator.

However, further work i s also necessary on the model i tself . Data

1— 5



—V —V.- ___~~~~~~~~ - -  -v_~•,~~~

I

collection and further analysi s are required to develop models of all
of the activities Identifi ed . Section 6 describes wha t further research
is required .

I-

1-6



V -- -~~~~~ --V- - -

p

SECTION 2

INTRODUCTION

2.1 BACKGROUND
The software development process is the subject of increasing research

and study . The motivatin g force behind the widespread interest in

software engineering is the high cost of software, the fact that more

applications are being computerized , and the greater complex i ty of the

software systems being constructed . There are basically two areas of -

research of the software development process. On the one hand , there is

interest in better ways of developing quality software. This is the goal

of the “structured revolu ti on” in software develo pmen t, which has affected

all phases of the software development process -- from analysis to speci-
fication , to design , to programing , to test. New software development
methodologies have emerged in recent years which emphasize (1) the use of
software tools, including automated tools to support software development,
and also modularized software functions upon which more complex software

- 
- functions can be built; (2) the use of techniques which reduce software

complex ity , including the reduction of control flow complexity through
structured program ing ; and, (3) the use of better techniques for docu-
menting system and software design , Including the use of graphical and

hiera rchical means for presenting control and data flow .

On the other hand , there is interest in better ways of managing software
developments so that resource and schedule requirements are estimated
more accura tely, more efficient project organizations are instituted ,
and project progress is evalua ted more accurately. The software deve-
lopment manager is concerned with project planning and analysis , with
respect to software cost and schedule estimation , and he is concerned
with project management and control , with respect to project status
evalua tion and problem identification. The management of a software
development project is an extremely difficult job because of the

2—1

- - - - —V— V - - V .  V - - V. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A


-

continuous influx of new software development methodologies , the scarc i ty
of historical software cost and schedule information , and the-lack of

reliable tools to support the planning/anal ysis and management/control
tasks.

The software development process is a people -intensive process. Thus , the
research in software development methodologies is concerned with making
people more productive at developing software, in terms of increasing
the rate of software development and decreasing the occurrence of errors.
Similarly, the research in software management methodologies is concerned
with making the overall project team more productive and efficient by
more accurately anticipating project personnel requirements , and more
reliably selecting the best project team organization.

The objective of our research is to formulate a model of the software
development process that can be used by the software development
researcher, or by the software development manager. The software

development researcher wi ll use the model to evalua te the impact that
changes in software development methodology will have on personnel
productivity . The software development manager will use the model to
predict the cost and schedule characteristics of a software development
project, and to evaluate the impact that alternative project organiza-
tion strategies will have on overall project team productivity and
efficiency .

2.2 ON MODELS

A model Is a representation of a system which gathers together in one
place our understanding of the behavior of that system. The purpose
of developing a model of a system Is to have a vehicle for predicting

the behavior of the system under various conditions. The adequacy of
the model is normally determined by five criteria: (1) applicability --
does the model answer the questions that we want to ask? ; (2) confidence

2—2

- - - - —-———V ---—-——-- - -: - - -~-- --— -.~~~~- - - . ---
~~~

-—- V -



V V. V.V. - ~~~
--

~~~~~~~
--

~~~~~~~
-- - ----

~~~
- -

— - --V - - ~VV -VV. •~ — ____ --

-- is the model sufficiently accurate for our purposes?; (3) complete-
ness -- is the model broad enough to encompass all pnenomena of interest?;
(4) minimali ty -- have system states that are unnecessarily discriminated

been combined? and ; (5) independence -- have system states that involve
interacti ng factors been decomposed into multiple states?

The software development process has been modeled by researchers in
software engi neering primaril y for the purpose of predicting the life
cycle costs associated with developing computer software . The model s
that have been developed are macroscopic model s which use analytic
techniques to represent the behavior of a software development. We will
now consider the merits and shortcomi ngs of these model i ng approaches ,

and explore an alternative approach using simulation techniques. The
next section describes the characteristics of the software development
process which make it difficul t to model , and i dentifies the analytic
model ing approaches that have been utilized in the past. The final
section in this chapter discusses how a simulation model i ng approach
can be applied to modeling software developments. In both sections , the
five criteria for determining the adequacy of a model will be applied .

2.3 ANALYTIC MODELING APPROACH
The software development process can be viewed as a black box process
whi c h trans forms the user ’s needs and des i res , and the available
resources into software products and by-products .

User I Software 1 Software
Needs And -

~~~ Development ~ Pro duc ts An d
Desires L Process J By-Products

Availabl e
Resources

A macroscopic model of this black box process can be developed by
identifying the parameters which affect the progress of the software
development, and then constructing analytic relations which can be used

(

2-3

_ r --- ~--.~-



-V.~ - —  ~~~~~~~~~~~~~~~~~~ 
- -- --—--.

~

-.- - — -

to compute the software proj ec t cost from the model parameters . The
model parameters describe the software system to be developed , that is ,
the characteristics of the software products and by-products , including
system type, size, and complexity . They also describe the characteristics

of the resources to be applied in developing the software system, includ-
ing number of personnel , productivity of personnel , and rate of
consumption of computer resources .

The software cost relations describe how the software cost parameters

are used to compute the various costs associated with the software
development process. These relations must be constructed empirically,
using data collected from past software developments. Examples of

anal ytic relations which have been used with some degree of success
are the following : (1) similar experience (C=C~) -- where cost data
from a previous similar experience are used directly. Similarity of

projects is determined by similarity in software cost parameters;
(2) statistical (C: 1. Ew~C~, where w=Euj )-- where the weighted average
of cost data from a number of similar experiences is used. The magnitude
of each weight is determi ned by the degree of similarity in software

cost parameters; (3) constraint (C=C0) -- where the resources available
for the software development are fixed , and the level of effort is
adjusted according ly. This is a design to cost project, where the cost

is fixed at C0; (4) unit of work (C=ECj) -- where the project is
subdivided into sufficiently small pieces such that each piece is
equivalent to a single task that an individual can perform over a
specified time interval. The cost that is associated with each piece
of the project is C1; (5) quantitative (C=f(P 1,P2 . . . Pa ) )  -- where
cost estimating functional relationships are empirically derived . The
arguments P1 in these functional relationship s are the software cost
parameters. For example , average productivity or cost per instruction
equations use the estimated system size to generate the predicted project

cost.

2-4

— -- 
-
~~~~ 

-

~~~~~~~~~

_

~~~~~~~~~~~~~~~~~~~~~~~~

V

~~~~~~~ 



-—--V.- -

In order for the software development manager to use a macroscopic
model , he must obta i n values for the software cost parameters. Fi rst,
he must determine the characteristics of the software products and
by-products. This is in principle very difficult because the target
software system does not yet exist Techniques for accurately estimating
the characteristics of the target software system are important because

the results of the model are not rel iable if the model parameters are
inaccurate. Second, he must determine the characteristics of the
resources to be applied . This is in principle easy to do because the

software development manager can hypothesize a number of resource plans
and use the model to assess the feasibility of each plan.

The primary advantage in taking an analytic approach to modeling the
software development process is that the resulting macroscopic models
are relatively easy to develop and use. To develop an analytic software
cost estimating relationship (CER), a set of significant software cost
parameters is first identified , and the CER is formulated using analytic
techniques such as regression analysis against a historical software
cost data base. To use an anal ytic software CER , values for the
significant software cost parameters are estimated and used to evaluate
the CER. In addition to convenience , analytic techniques , if auto-
mated, are normally highly efficient in terms of processing time .

Despite the convenience of the analytic model i ng approach , there are
serious shortcomings that limi t its usefulness. First , there is limited
visibility into the dynamic aspects of the software development process.
Analytic models tend to be “black boxes” with only the final project
cost and schedule as the model output. Second , anal ytic models contri-
bute limited understanding of the internal behavior of a software
development. Analytic models tend to be “macroscopic ” and do not
provide insight into the interdependencies between the various software
cost parameters. Third, analytic model s provide limited decision anal-
ysis capabili ties. There is little assistance provided for determining

2-5

L _ - - -~~~~ - - - ~~~~~~~~~~~~~~~~ -— 



V.-- -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

— V . V- V.V.V

~
~~~~~

how management and development decisions (which cannot be represented
quantitatively by a software cost parameter) will affect project cost
and schedule.

The adequacy of the analytic approach for modeling the software develop-
ment process with the objective of supporting the software engineering
researcher and the software development manager is suninarized in the
following table.

Criteria Evaluation
applicability limited
confidence margina l

compl eteness limited
min ima lity excel l ent
i ndependence limi ted

Applicability is limited because it is difficult to construct analytic
models which ans’,,~r questions pertaining to the detailed progress of a
software development. Confidence -is marginal because the results of

analytic models are not easily extrapolated from one software environ-
ment to another. Completeness is limi ted because only high l evel
macroscopic phenomena are represented in analytic models. Minimality
i s excel lent because of the macroscopi c point of v i ew, but inde-
pendence is very li mited, as independent states have been combi ned
together.

2.4 SIMULATION MODELING APPROACH
Whereas the analytic modeling approach treats the software development
process as a black box process, the simulation modeling approach
attempts to decompose the process and understand the internal behavior
of the process. With the simulation model i ng approach, we view a soft-
ware development system as a collection of interdepehdent elements
which act together in a collective effort to achieve the goal of
imp l ementing computer software. These elements are primarily people ,

2-6

- -
— — - - - - - - - - - V - - -— — V  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V.- 



—-- --V.- ~~~~~~~~~~~~~~~~~~~~~~~~ - -V .-—~~~~ -V.— -— - -

including analysts , designers , programers and testers, and machines,
includ ing computers and terminals. The simulation view is , thus , a
microscopic view , as opposed to the macroscopic view , in the analytic
approach. Simulation mode linq is the process of developing an internal

representation and a set of transformation rules which can be used to
predict the behavior of, and relationships between , the set of elements
composing the system under study The internal representation of a

software development system is described by system state variables , such
as software size and complex ity, personnel productivity , and project
status and progress. The transformation rules describe the interdepen—-
dence between these system state variables . These transformation rules
may be analytic - expressed in the form of functional relationships , or
they may be representational - expressed in the form of an algorithm .

Taking the simulation model i ng approach basically means having a

microscopi c view, and being able to express both functional and
algorithmic relationships between system state variables . There is a
signif~cant increase in descriptive model i ng capability when using the - -

simulation approach. In fact, all of the weaknesses associated with
the analytic approach -- limi ted visibility , limi ted understanding , and
limi ted decision analysis are el iminated with the simulation approach.
The modeler can describe the software development process in as much
detail as is required to answer the questions that are being investi-
gated .

Unfortunately, al though simulation provides a much more powerful tool
for studying the software development process, it does not automatically
“solve” the problem . There are still a number of difficulties that
must be addressed. First, the study of che software development process
is still an empirical study. We must still collect data from actual

software developments to calibrate and validate our models. Of course,
a simulation model will provide insight into the internal behavior of

2— 7

—- ----- - V . - V - - -- V.-- - - ---V. -- -- “— .— V.-—--- -- - - -V.- S— -V —V. - V.----- -V -.-- - - - -- - V - - V



-—-—-V . - - - - ~~~~~~~~~~~~~~~ 

the system, and the interdepend encies between system state variables.
But , we still have the burden of proof in demonstrating the accuracy
of our simulation model . Second , a simulation model of the software

development process will , no doubt be .parameterized so that it could
apply to a number of software development applicati ons in a number of
software development environments. Thus , there is the problem of

accurately estimating the values of these parameters to be input to the
simulation rnouel . This problem existed for the analytic modeler , and

it does not go away for the simulation model er. Third , the amount of

effort required to develop a simulation model , and the amount of proces—
sing time required to execute a simu l ation model are substantial . In
fact, they are significantly greater than that required for an analytic

model .

We will now discuss our basic approach to using simulation modeling for

studying the software development process. In Section 4, the
details of the development of a simulat ion model of the software
development process will be described . In this section , we are concerned
with what are the most difficult model i ng problems that will be encoun-
tered, and how the simulation model can be used to support the software
development researcher and manager .

Complexity , productivity , and qual i ty are, by far, the most difficult

aspects of the software development process for the researcher to under-

stand and for the manager to manage. Complexity and quality are attri-
butes of the software system that is to be developed , while productivity
is an attribute of the personnel resources to be applied in the software

development. Complexity is important because, along with system size ,
It gives a measure of the amount of effort required to develop the system.
The question is how to quantify system complexity , and then how to

represent it so that interdependencies with other system attributes are
modeled . Productivity is important because, with a given personnel
allocation, we can use productivity to predict project schedules . Lines

2-8



-----V.- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - V .~~~~-— - - -~~~~~-- -V.- - - -

of code has traditionally been used to express programer productivity ,
but the complexity and quality attributes of the code will also affect
produ ctivIty . Quality is important because the level of qual ity o~
an intermediate software product will affect the amount of effort

that is required in a subsequent phase of the software development.

What is needed are model i ng concepts that will allow us to combine
the factors of complexity , productivity , and quality in one integrated

model .

A simulation model of the software development process may be used for
planning and analysis functions , or for management and control func ti ons.
Planning and analysis functions include cost and schedule estimation ,

productivity analysis , and quality analysis. These functions are
concerned with how different development and management methodologies
will affect cost/schedule , productivity , and quality . Management and

control functions include project status estimation and problem identi-
fication. These functions are concerned with how to relate project
resource consumption to project progress, and how to recognize potential

bottlenecks.

The adequacy of the simulation approach for modeling the software

development process is sumarized ir~ the following table.

Cri teria ~valua tion
appl icability excel 1 er-it
confidence promi sing

completeness excel lent
minimality excellent
independence excel 1 ent

Applicability is excellert because a simulation model can be oriented
toward studying any aspect of the software development process. Confi-

dence is promising because if the accuracy of part of the model is not

sufficient , then that part of the model can be expanded to a higher

2~ 9

- . - V.- --~~~~~~~~~~~~~~~ - - V

-- - V. - -- .-

-~~~~ ~~~~~~~~~~~
--

-~~~~~

level of detail. Completeness is excellent because of the microscopic
view tha t is taken with the simulation approach. Minimality and
independence are both excellent because the flexibility inherent in the
simulation approach allows system states to be comb ined or decomposed
at the discretion of the modeler.

2-10

- ____V: _ - - p %W . .aS —

SE CTION 3

DEVELO PMENT OF SI MULATIO N MODEL

3.1 ORIENTATION OF THE SIMULATION MODEL

Our study of the software development process is motivated by threi basic
objectives . First , we wish to formulate a model of the software develop-
ment process to help us to better understand the internal behavior of the
process. All of the models tha t have been developed thus far are macro-
scopic models which do not provide insight regarding interdependencies
between system parameters . We want to develop a microscopic model
which will provide the opportunity to explore the internal characteristics
of a software development , arid the relationships between these character-
is tics.

Second , we wish to apply simulation techniques to evaluate the validity
of our microscopic model with respect to historical software data .
Clearly, analytic techniques are not capable of producing the desired

-
~ microscopic model , so we want to adapt the relevant simulation modeling

techniques to represent the software development process on a microscopic
level .

Third , we wish to develop a simulation-based methodology for software
cost and schedule estimation. Given a validated simulation model of the
software development process where the interdependencies between micro-
scopic system characteristics are represented, we want to determine the
kinds 0f system characteristics that should be input to the model . We
also want to determine the kinds of behavior statistics of the software
development system that should be output to the model user.

3.2 LEVEL OF MODEL DETAIL
It was decided to take a mi croscopic view of the software development

process in order to better understand its internal behavior. We need

3— 1

__________ _______ - -V.-—- ~~~VV

V. -,
—

~ —. ,.-.--
~--.-

-V V. ,—
—

5
—--— —V

to select the proper l evel of model detail. The proper level of detail
will depend both on what is needed to satisfy the goals of the simulation
study, and on what is practical to implement or collect data for. The

objects or entities that will be represented in our model are: people ,
resources , and products. Let us now examine each of these entities in
more detail to determine a suitable l evel of modeling detail for each

entity .

People are the primary entity in our system. There are a number of

different types of personnel that are required in a software development.
We could discriminate personnel type by job title , or by gener ic job
function. We have chosen the latter approach for simplicity , and because
there is no present need for the more detailed distinction . For each
generic job function, we can identify a number of activities that are
performed by a person having that job function . For example , the

activities performed by the system designer are: 1) hardware architec-
ture and configuration; 2) software architecture and decomposition;
3) system performance/reliability analysis; and , 4) system test plan.

The level of detail in the specificaiton of activities for each job
function remains to be determined. Experimentation with the model will
no doubt lead to many refinements in the model. It is anticipated that
a mul ti-level model will result; that is , one with var ying levels of
model detail for different components of the model .

Resources are the equipment used by software development personnel in
order to perform their job function and comprise the second type of
entity in our system. Resources may include computers , computer termi-
nals , and keypunch machines. We are primarily interested in resources
that affect productivity , or contribute to delays caused by contention.
An example of a resource that affects productivity is the computer

3—2

- - -
- .- ~~~~~~—~~~~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

_~~~~~~~ r~
- =-—--

.- --
- •1

V.Vu-

termina l used in an interactive software development effort. The
programmer in an interactive development environment is more productive
than one in a batch development environment using keypunch machines . The
compu ter term i na l i s a l so an exam pl e of a resource that can cause de l ays
due to contention . The level of model detail in our representation of
the resources utilized in a software development is thus determined by
a simple rule: include only those resources which have a significant
Impact on project progress.

Software products, both i ntermediate and final products , are the thi rd
type of entity in our system. A software product can be a document, for
example , a system requirements specification , or it can be a piece of
co de, for example, a computer program or subprogram . Software products
provide a measure of the progress of a software development in the same
way that the utilization of personnel and non-personnel resources is a
measure of project progress. The identific ation of software products
ena b les us to more mean ingfull y decompose job func ti ons i nto deta i led
activities . The leve l of detail to be used in modeling software products

- thus depends on the level of detail to which personnel activities are
modeled. If activitie s are modeled in more detail , then a gre ater number
of intermediate software products will be represented in the model .

3.3 MODEL FORMULATION
The software development process has often been described in terms of a
sequence of phases: the requirements analysis phase , the prelimi nary
design phase, the detailed design phase , the programming phase , and the
integration/test phase. This is a natural way of viewing the software
development process, but is of limi ted use because the definition of these
phases is tied to the passing of time , and not to the dynamic behavior of
the process itself. This view of the software development process is a
milestone-driven view. There are other ways of looking at the software
development process that are similar to the phase approach, but not defined
in terms of time. These are : the activity progression model , and the
product progression model.

3-3

_ _ _ _ _

V. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--V.----- — —-- -V ~~~~~~~~~~

In the activity progression model , the software development process is
represented by a mix of ongoing development activities. The activiti es
can be measured by the quality , quantity , and type of development activity .
An activity is related to the amount of effort required to perform that
activity rather than the time to perform it. The tvDes of activity are
the activities described in the previous section , the results of decomposing
the phases.

The important di fference with the activity progression model is that we ,
can have varying mixes of activities ongoing in parallel. For example ,
during the beginnin g of the project, there is mostly analysis-oriented
activities going on , some des i gn , but no programing. The quantity of
development activity is measured by the number of person hours per week
that are coninitted to each activity . The quality of the work that is being
performed can be related to the background and experience of the personnel
performing the activity . This can be expressed in quantitative terms by
ass igning quality ratings to various types of background , and to various

(levels of experience. These concepts are illustrated below.

SYSTEM DEVELOPMENT PROGRESS IS REPRESENTED BY THE MIX OF ONGOING

DEVELOPMENT ACTIVITY (WORK BREAKDOWN STRUCTURE MODEL):

TYPE QUANTITY . QUALITY

REQUIREMENTS ANALYSIS PERSON

DESIGN HOURS
PERSONNEL

CODE AND DEBUG BY
EXPERI ENCE

TYPE OF
PERSON

Figure 3-1 Activity Progression Model Concepts

- ---— - V.-- .- ‘~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ - - -

V. - -V-

- - —V.—-

- ~~~~~~~
-~- --~‘~a - ~

-- -
- - —

The activity progression model is closely related to the work breakdown —

structure (WBS) concept. In developing a work breakdown structure for
a particular software development project, the proj ect is decomposed into
a sequence of work packages such that the mix of activities to be
performed for each work package is well defined , and such that the
quantity of personnel resources required for each work package is easily
estimated. The activities in the activity progression model correspond

to the work packages in the WBS. There are two possible modes of opera-
tion for the activity progression model . For planning purposes, the
simulator will pick a Q val ue for each activity which determines the
anticipated experience of the personnel resources to be applied in that
activity . The Q value will then be transformed into the effort E
required to perform the activity . This transformation will be done by
using empirically derived rules . Based on the quantity of personnel
resources to be applied in each activity , the simulator will use the
derived effort to develop schedule and cost estimates for that activity .
For control purposes, the Q value for each activity will be estimated
based on the personnel actually being applied. The simulator will use
this data to estimate the remaining effort required , from which updated
schedule and cost predictions can be made. Fi gure 3—2 describes the
operation of the activity progression model.

Determine] J Calculate Estimate
Resource ~~~~~~~

Effort E= Cost And
Experience Qj f

~Q1 Schedule

Systeili ~ystem R~sourceSize Complexity Quantity

Figure 3-2 Activity Progression Model Processes

In the product progression model , software development progress is
represented by the degree of development of system knowledge. In this
model , we view the software development process as a process of creatIve

3-5

- - V.-. ~~~~~~~~~
~~~~~~~~~~~~ — - -- 

V.



- - 
-

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

------V—V.---- 

~

--V--V - ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
VV. 

V.,

knowledge synthesis. System knowledge starts out in the form of require-
ments, and evolves through design concepts to program code. The evolution
of system knowledge Is constrained by technological and economic limi tation
and , affected by the application of management and development methodol ogies.
We can measure the degree of development of system knowledge by the quality ,
quantity , and type of each intermediate system product that Is produced.
The ~ype of Intermediate system products will be documents or code. Examples
of system products are: system specification , preliminary design document,
detailed design document, source code, and test plan. The quantity of a
system product can be measured by the number of pages in the document and
by the number of lines of source code in the program. The quality of a
system product will be expressed by software quality metrics which rate the
quality characteristics of the document or code in quantitative terms .
These concepts are illustrated in Figure 3-3.

SYSTEM KNOWLEDGE EVOLVES IN THE FORM OF THE PROGRESSION OF
PRODUCTS DEVELOPED (PRODUCT PROGRESSION MODEL).

TYPE QUANTITY QUALITY

REQUIREMENTS SPEC
DESIGN SPEC

TEST PLAN LINES OF AS

SOURCE CODE DOCUMENTATION

METRICS
CODE

FIgure 3-3 Product Progression Model Concepts

3-6

-: ~~~~~~~~~~~~ ~~~~~
.. ~~~~~~~~~ - — - . - - 

.



-

The product progression model is closely related to the concept of system
knowledge evolution. In modeling the evolution of system knowledge , the
only tangible evidence of the changing character of system knowledge is in
the intermediate system products. There are two possible modes of opera-
tion for the product progression model . For planning purposes , the
simulator will pick a Q value for each intermediate system product which
determines the anticipated quality of that system product. The Q value
will then be transformed into the effort E required to produce the system
product. This transformation will be done by using empiri cally derived
rules. Based on the quantity of system product to be produced , the
simulator will use the deri ved effort to develop schedule and cost esti-
mates for each product. For control purposes , the Q value for each system
product will be estimated based on the intermediate system products
actually produced to that period of time. The simulator will use this data
to estimate the remaining effort required , from which updated schedule and
cost predictions can be made. Figure 3-4 describes the operation of the
product progression model.

1~~~~ i~T~~ 1 Calculate Estimate
I Product }—‘ Effort E= ~ Cost Andy (Q) I Schedule

System System P~roductSize Complexity Quantity

Figure 3—4 Product Progression Model Processes

The activity progression and product progression models are two alterna-
tive ways of looking at the software development process. With the activity
progression model , we are looking only at activiti es and quality character-
Istics of the resources being applied , assuming that products of “standard”
qual ity are produced. With the product progression model , we are looking
only at system products and their quality characteristics , assuming that

3—7

.

~~~~ - - - - - V - - ~~~~~~~ 


- V. —

personnel resources of “standard” experience are applied . In genera l,
we must be concerned with both the experience of the resources appfled,
as well as the quality of the products produced .

Figure 3-5 describes the operation of a combined activity/product
progres sion model :

Determine
Resource resource

Experience RQ quantity

) Calculate Estimate

~~~~~~~~~~~~~~ ~~~ Ef~O~’tE~ I ~~iedulJ
Determine product
Quality RQ qu n 

~

Figure 3-5
Combined Activity/Product Progression Model

We have discussed alternative approaches to viewing the software develop-
ment process -- as a sequence of activities performed, as a sequence of
products produced, or both. There are two additional topics tha t must
be addressed as part of our model formulation. One topic is the identi-
fication of all the state variables by which the internal and external
characteristics of the software development process will be represented.
The second topic is the identification of all the analytic and
algorithmic rules by which the dynamic behavior of the softwa re develop-
ment process will be represented . The analytic rules typically represent
the time dependent behavior of the state variables , or the interdepend-
enctes between state variables . The algorithmic rul es typically
represent the conditions for when to apply an analytic or another
algorithmic rule, or when to change the nature of an analytic or algo-
rithmic rule. Algorithmic rules also specify the time dependent
grouping of analytic or other algorithmi c rules .

3-8



-
-

The state variables of the model of the software development process can
be classified into three groups -- first , those variables describing the

software system to be developed ; second , those variables describing the

personnel and computer resources to be appl ied during the project; and ,

third , those variables which describe the progress of the software
development. State variables describing the software system include

system size and system complexity . State variabl es describing the project

resources include number and experience level of each type of personnel
resource, and number of each computer resource. State variables describ-
ing project progress include active/ i nactive flags for all activities
and products, and cumulative effort expended on each activity and product.
Further analysi s remains to be performed to devel op a more complete set
of system state variables.

The rules that represent the dynamicbehavior of the software development
process include ana lytic as well as algorithmic rules . Analytic rules
can be used to express the effort required to perform a certain activity
or to produce a certain software product as a function of type of
activity or product, and quantity and quality of activity or product.
Anal ytic rules can also be used to express time and dollar costs for a
given activity or product as a function of the effort required . Al go-
ri thmic rules are normally used to represent the interdependence between
activities or between products. For example , when the cumulative effort
being applied on a particular activity or product reaches a threshold ,
then that activity or product is completed , and subsequent effort applies
toward the completion of the next activity or product. In our prel imi-
nary analysis we have attempted only to establish the kinds of ana lytic
and algorithmic rules to be included in a model of the software develop-
ment process. A more detailed and complete set of rules remains to be
established , and empirical studies need to be performed to calibrate
and val idate the rules that are developed .

3-9 

V. - - — -V.-___



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~

3.4 MODEL INPUTS
We distinguish between two categories of simulation model inputs -- the
model parameter and the model cal i brati on values . The model parameter
values are the values of the system state variables which describe the

system characteristics, the resource characteri stics , and the project
characteristics. The model cal ib ration va l ues represent those factors
which affect the behavior of the model which are not system state

variables. Each software development environment will have its own set
of model calibration values. Each software development environment can
be appl i ed to developing different software systems with different

personnel resources . The factors which affect the model calibration
values are the management methodology, which includes how software
development teams are structured , and the development methodology, which

includes what software development tools are availa ble for use by project
personnel . Some of the antici pated inputs are shown in Table 3-1 .

MODEL PARAMETERS CAL IBRATION PARAMETERS
• SIZE • DEVELOPMENT MANAGEMENT PLAN

• by subsystem • methodology
• lines of source code • organi zation
• type of language • staff mix
• percent new code • milestones

• COMPLEXITY • products/quality goals
• development tools

• TYPE OF SYSTEM • perceived risk areas

• CONSTRAINTS • ENVIRONMENTAL FACTORS
• processing time
• storage size

Table 3-1
Anticipa ted Model Inputs

3-1 0

_
V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V. ~~~~~~~ ~~~~ 
-
~ 

—_V. VV. — -

3.5 MODEL OUTPUTS
Several modes of operation are anticipated for a simulator. The usual

mode would be to provide the simulator the required schedule and the
input data identified in Table 3- 1. The output woul d be a resource
expenditure profile and the cost. Another mode of operation would be
to input a resource profile and have the simulator provide schedule and
cost i nformation. A third mode of operation is to provide cost data ,
and allow the simulator to produce a resource profile and schedule.
The schedule and cost information could be generated for the entire soft-
ware development project, or can be generated by activity or by product.
The information that is generated can be static information , that is ,
suninary statistics of the values of selected system state variables ,
or histograms of these state variables. On the other hand , the

information that is generated can be dynamic, that is , a trace of the
values of system state variables at each value change , or a plot of
these state variables against time as the independent variable. The

execution of the simulation model represents the behavior of the

software development process: we can make one execution and collect
statistics which indicate the model ’s static and dynamic characteristics.
Al ternatively, we can make several executions, and compare the behavior
of each model to arrive at an optima l schedule or resource allocation
plan •

In addition to this standard output , output that supports risk and
sensitivity analyses and projections of anticipated maintenance l evel s
will be available. These outputs are shown in Table 3-2.

SU*IARY DETAILED
• COST • ACTIVITY PERFORMANCE
• SCHEDULE • MILESTONE PERFORMANCE
• RESOURCE EXPENDITURE • RESOURCE UTILITZATION

PROFILE • RESOURCE QUEUE STATISTICS
• RISK • DYNAMIC SIMULATION TRACE
• SENSITIVITIES
• PROJECT MAINTENANCE

Table 3—2 Antici pated Model Outputs

3— 11

— — ~~~~~~~~ - — 
~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 

- — -
~~~ 

— V
~~~~~

- —— -


~~~~ VV~ ~~~~~~~~~~~~~~~ - - -

SECTION 4

DECOMPOSITION OF THE
SOFTWARE DEVELOPMENT PROCESS

4.1 INITIAL CONCEPTS

The challenges of managing a software development are iriinense because it
is a multi-element process which is highly coupled and highly complex ,

and there are wide variations in controllabl e and uncontrollable var-
iables between projects. In the past, the technique used by managers
has been to decompose the software development process into “independent”
subprocesses and manage those separately. This technique , generally

followi ng the Wolverton description [WOLV 72], does not usuall y reflect
a very accurate model of the way software is currently being developed
or is not in enough detail to analyze the causes of poor performance

ETURN 76]. The “waterfall ” di agram , (Figure 4-1), in fact, originally
was utilized to project the idea that each phase should be completed and
val idated before beginning the next phase ECARR 75). There has been
recognition in recent years that interaction occurs, and that a contin-
uous configuration management effort is required to keep the products

of each phase up to date and consistent. Thus , the traditional
widely used “model” of the software development procecs is outmoded , no
l onger representing a true picture of how software is developed .

Another reason for a more detailed model of the software development
process is to assist in estimating the effort and cost of a project.
The f~l1owing quotes provide the opinions of several researchers in
this fiel d:

Estimates will improve only when the estimators achieve
greater insight and understanding of the system develop-
ment process, and the functions which make up the process,
of the interdependencies of these functions and of the
factors which infl uence the resource requirements of the
functions. [GEHR 76]

L V.~~~~~~~~~~~~ V . V  ~~~~



V. - -  - - —. ~~~~~~~~~~~~~~~~~~~~~~~~ 
—k,. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~-- 

V. V P~~
•_V V_~_ ~~~~~~~~~~~~~~~~~~~~~ V . - --

CoNan
roRMILAHoN

SYS((M
R(QW R(MU4I S

SOF IWAHE
R( QUIft (~~ p41S

SOIl WA RE
DESIGN

SOFTWARE IMP~~~~~ i~.DEVELOPM ENT

EVALUATION

OVUlA T IONS &
MAINTENANCEP

Figure 4-1 Traditional Software Development
Process Model

I

4-2

IIIL _. 
~~ ~~~~~ .~~~~~- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - ‘——— 

~~~~__V VV. __V. 
- V.4

~ uUI~

Many of the probl ems of resource estima ti ng are symptoms
of an underlying ignorance of the process of program
system development for which the estimates are being made.
The serious students of estimating must first be willing
to probe deeply into the fascinating and complex software
develo pment process ; to uncover the phases an d func tions
of the process; to highlight the subtle interrelationships
of the program system being developed and the project
organization doing the developing .
Those who persevere , however , will recognize that examining
the influencing variabl es and their causal relationships
is precisely what is required if estimates are ever to be
improved . Only then can we do meaningful quantitative re—
search and scientific analysis of resource requirements .
We are never likely to el iminate unpredictable variability ,
but we should be able to go a long way toward improving
predictability far above today ’ s primitive state—of-the-art.
[PIET 70]

At present, most manage rs focus on on ly one of the process
inputs -- labor - — and one of the outputs - — lines of code.
[KOLA 76]

This detail will not only assist in estimating the task, but also in

assess ing r i sk , a l loca ti ng resources , and planning strategies ; i.e.,

developing a detailed development plan. It will provide better visibi-
lity of the assumptions and dependencies upon which the success or
failure of the development effort depends.

The advantages or benefits that could be derived from a more realistic
model of the software development process are:

• A model which describes .the process in more breadth and detail

to provide a better understanding of the interactions and re-
lationships within the process

• A perspective to evaluate and analyze the symptomatic data
which are gathered during a development

• A framework in which the utility of new tools and methodologies

can be evaluated.
A planni ng aid to assist in establishing resource mix require—

V -~~~ V. ~~~~~~~~~~~~~~~~~~~~~ -- ~V.V. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ments an d sc hedu l es
• A project management aid to enhance progress determination and

problem i dentification

Current cost estimation techniques ([~um 77~), [REFE 77]) do not provide
any greater detail in their model of the software development process ,
as shown in Figure 4-2.

The approach taken in this study was to attempt to model how software -

is actually developed . As a starting point , an extension to Wolverton ’ s
model that has been recognized in recent years is the addition of feed-
back paths as shown in Figure 4—3. This model acknowledges that redesign ,
revisions to the requirements , and changes to the source code take place
constantly in the development of a software system. This iteration not

only relates to the correction of problems found in the later stages
of the development , but a l so represen ts an i ncrease in the amoun t of
knowledge about the system -— it~ functions and uses -- that takes place
over the time span of a development.

These corrections and revisions take place as a function of the activit ies
the develo pmen t personne l perform , not as a complete recycle of a phase ,
as depicted in Figure 4-3. Therefore , Figure 4—4 is a representation of
this growth of knowl edge about a system on a timeline. A part of each
subsequent phase to requirements analysis is correcting , modifying , or
adding to the requirements stated at the end of the requirements analysis
phase. This increase or expansion of detail , knowl edge, and documentation

about the system that occurs during succeeding phases , then , includes the
updates and revisions to the preceeding concepts. These concepts were
previously discussed in Section 3.

4-4

- - - - - -~ -~VV.~ -*V.~~~~~ ~~~ ••~~~_V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
V. V~V.

—~~

— •____ V~V.~ ~~~~~~~~~~
__

~V ~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~PI~ SE

DESIGN II4P1E M ENIATI ON TEST & INTE GRATIO N

LINK CYCLES TO GET A PROJECT ?~~O~~ILE
VIS E SUGGESTS CYCI U MAY U AOOITIVI
OISPLAYIO AGAINST A TIME EASE

I~~ oav
PEA
UNIT
TIME
IM• YI’rA~

~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PUTNAN LIFE

TIME

Figure 4-2 Current Cost Estimation Technique ’ s
Depiction Software Development Process

4-5

-- ~~ V.

- -— ---a ~~~~~~~~~~~~ — V.V~~~ V — V • V.V.V.V —
— -V..-

- — - - -~~ - - - —-

VERIFICATIO N PROBLEMS

(WFINI T ION OF
SOFTWARE COO ING

it REQU IREME N tS PROBLEMS

SOFTWARE

~~~~~~~~~O~ t NS

~~~~~~~~ 
DCBU~_ _)

“ ROOLEMS -

TEST

SOFTWARE CHE CKOUT PROBLEMS INTEGRAT ION I
VERIFICATION

1469A 2 F NAI.
DOCUMENTATION

Figure 4—3 Software Development Process
with Feedback Paths

(

4-6

_ _ _ _ - _ _ _ _ _ _ _ _ ~~ ~~~~~~~~~~~~~~~~~~

rip—
-V.- . .-.- —----_.- ———-.-—--.~~~ .-~~~

-—----- --.- :: - ~~~~~~~
—
~
-----‘- -----—

~~~~~~~ -,~~~~~~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ ~~~~~~~ 
V - -V.— - - -

V.

1 I ~~ E L I M I~AR~~ DETAILED ~~~ING TEST OPERATIONS

~~~~~~~~~~ DESIGN DESIGN CHECKOU T INTEGRATION MAINTENANCE

A
SYSTEM A _____________

REQUIRE MENTS PRELIMINAR Y A _____________

REVIEW DESI GN CRITICA L
REVIEW DESIGN A

REVIEW ACCEPTA NCE
TEST

1775 A—1

Figure 4-4 Timeline Representation of
Software Development Process

(

4-7

— - — -—-—-- -------—---- ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~_ _ A -.-- - ~~

V

- - V
- - -

4.2 APPROACH TO DECOMPOSING THE SOFTWARE DEVELOPMENT PROCESS

Conceptually, the software development process is a process which is
driven by a concept of , or requirement for, a target system and utilizes
the resources of a sof tware product ion fac tory to produce an operat ional
sys tem. The target system is a software system which has certain desired
characteristics. These characteristics have an impact on the amount of
resources which are consumed or utilized in the process of produc ing the
operational system . The software production factory is the organization ,
staffing , and development strategies superimposed on the resources of a
project group (consisting of personnel and development tools), wh ich
provide the production capability and environment for accomplishing the
system development. The operationa l system, the output of the process,

is represented by the documents, data , and code produced as a result of

the software development.

Imposed on this development process are a series of milestones which
represent i ntermediate formal reviews of the progress towards the opera-
tiona l system. Further , there are documentation requirements which define
what products are to be delivered . Almost all software developments have
these milestone and documentation requirements . Perhaps the most rigorous
set of requirements are those imposed by mil itary standards. These con-
cepts are shown in Figure 4—5.

The currently utilized model s of the software development process, dis-
cussed in Section 4.1 , represent a h ig h l evel decompos iti on of t he
process , oriented toward the milestones imposed . Current cost estimation
techniques basically attempt to replace the process with a relationship
that represents the tranformat ion from t he inpu ts , represented by the
target system characteristics and the resources of the software pro-
duction factory , to the outputs, represented by the documentation and
code.

Our approach to modelling the software development process was to

4-8

-— — -- -

-~~ — -— - ~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~ -

w

F

~~~~~
.~~

(I.’
, 0

— I In
In

a — S — ——  — — — —t o
0

0~

C,, 4.1
0

0
I— _‘ C,~ C,’

~~ 
I~~ -

~~ — U
— —

Q —
,~# L~~ 

I
~~ c~~ ~~~

.4-— 0

A A 1

I/
~~~~
IJ~~ 0~~~ 3 ~Cfl 0 0

I-

.

-

V - - ~~~~~~~ ~~~~~~ -- —
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~

-
~~~~

- - - - — — —

V. —_ -~~~~ .___ --~ V. —_V.V-— -V.~~----V— --- —V.----- -- — V.----

decompose the process in more detail. The methodology used to
accomplish this decomposition involved a three—dimensiona l view (as
shown in Table 4-1): identification of the products of the software

development process; identification of the activities that comprise the
process; and , identification of the factors and resources that represent
the target system and the software production factory .

The products of this process that have been identified are those required
by militray standards. Intermediate products , as we l l as f inal products ,
were considered. In addition to the number , type, and size of the pro:

ducts and the resources required to produce them , the quality of the
product was considered . The effort required to update and modify the

documents during subsequent activities is affected by the initial quality .
Taking this phenomena into account, we hope to be able to model the
interactions between phases that current cost estimation techniques are
unable to model [GRAy 76].

Identification 0f the various activities in the process was accomplished

by decomposing each phase identified in the high l evel models into the
typical activities performed during that phase. The activities were
identified at a level of detail at which we feel valid simulation models
can be developed , and at which valid empirical data can be collected .
Further refinement could , and may, be done if experimentation indicates
that it is necessary. However, it is felt that refinement to a l evel
where individual decisions are model led and individual personnel wi thin
the development process are modelled introduces far too much variation
for simulation techniques to be truly effective. The l evel to which the
activities identified are model l ed is the team level ; i.e., a grou p of
people working on a particular aspect of the software system at a parti-

cular time in the development. The interdependencies between the
activities and the types of resources typically utilized were also
identified.

4-10

- - - _Uu rk ._- _S . . a A . - a~’.
_i~~~~—h.--..__ V —---—-- --_—~ -


~~~~ 
V~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

p

TABLE 4-1

DECOMPOSITION METHODOLOGY

(1) Identify Products (intermediate and final)
- type , size
- resource alloca tion
- qual i ty

(2) Identify Activities
- decompose phases
- resource utilization
- relationship to products
- interdependencies of activities

(3) Identify Factors and Resources
- impact on activities

I
t -

4-11

-~~~~~~~~~__ _ _ - V

- -
V - ~~~~~~~~~~~~ -—

The last aspect of the decomposition involved identifying how the
C resources , target system , and factors affecting the amount of resources

required would be described. These descriptive factors are the core of
the model s and the input variables to the simulator. The results of
applying this methodology are contained in the next paragraph.

4— 12

- - ~~ - - :_T
-- ~~~~~~~~~~~~ - —~~ -~~~~~~~~~~~~--~~~~-.—- —~~~ — ~~~~ —— -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

__
- - - -

4.3 DESCRIPTION OF MODEL

The activities , thei r interrelationships , and the products of the Software
Development Process are shown in Figure 4-6. This network of activities

represents a typical large-scale software development. While our intent
wa s to identifj generic activities , the ones identified are biased by
software developments performed in accordance with military standards .
Our design approach, which is illustrated in the next section , where a
prototype simulator is described , involves a library of these activities
from which a subset could be chosen and interconnected to represent a
particular development. Other activities could be identified . Table

-

4-2 provides an explanation of each of the activities identified in the
figure.

Note that in Figure 4—6 several activities in the detailed design phase
and implementation phase are duplicated . These activities are performed
on a subsystem, or CPCI level . In the figure , a two-subsystem develop-
ment is represented. The sequence of activities , or process thread ,
which is duplicated , would be repeated for as many subsystems as
identified in the target system. Each of these process threads are
performed normally by a specific group, in this case a progranining team,
in the devel opment organization . Other process threads can be recognized .
in the model description. For example , the process thread which begins
with Test Requirements Ana lysis in the Requirements Analysis phase and
proceeds through Test Planning , Test Planning and Preparation , System
Test Cast Generat ion , System Test Data Genera ti on , and ends with System
Tests and Acceptance Tests would normally be performed by an independent
qual ity assurance or test group. Figure 4-6, then, provides a phase/
activity decomposition of the software development process illustrating
process flow and data or product flow.

The resources that are typically utilized in a software development are
Identified In Tabl e 4-3. The phase in which they are used is a lso shown .
Our model to date , represented by the prototype, only considers a subset

4- 13

- 7Wpr-’~CWfl ~~~ -
~~~~ Z_ - - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 

. -- -~~~~~ —- -- V

- -~~~ ~-‘~ ~~~~~~~~~~~~~~~~~~~~~~ 
V - -~~~ ~~~~~~~~~~~~ - -

REQUIREMENTS A NALYSIS PRELIMINARY DESIGN

Sot TWA RE
Top
LEVEL
DESIGN SUBSYSTEM

fl ). REQUIREMENTS OPERATIONS REQUIREMENTS R EQ UIREM ENTS 
OESI GN

V DEFINIT ION DEVELOPMENT ALLOCATION TRACEABILITY
S

DESIGN PERF OIB4AN
DATA BASE SOFTWARE REQUIREI(

TOP LEVEL - PREPARE SDR 8 ARCHITECTURE ALLOCAT IG

DESIGN D~~A PA C KAGE
AND
A SPE C

INTERFA CE DATA..~ CONTROL DOCUMENT BASE

DEVELOPMENT DESIGN

~>~~~~U!REMENTS~ I~~~NIN~~~~~~~~~~~~
MANAG EMENT
PLANN ING ________________________________________________________________________________ I I UPDATE

CONTROL 1 SP~~ FICATION~ ~~

[SYSTEM
/ DESIGN
/ REVIEW
/ (SDR)

PRODUCTS
SYSTEM
SPECIFICAT ION 4 SOFTWARE SYSTEM 7 MANAGEMENT

(A SPEC) REQUIREMENTS PLAN
SPECIFICATIO N

SYSTEM (A SPEC) 7 CONFIGURATION

REQUIREMENTS 
MANAGEMENT

REVIEW 5 INTERFACE PLAN

DATA PACKAGE CONTROL
OOCL,qENT 7 DEVELOPMENT

SEGMENT 
STANDARDS AND

SPECIFICATION TEST CONVENTIONS
REQUIREMENTS

2 SYSTEM SPECIFICATION 8 SYSTEM DESIGN

INTERFAC E 
REVIEW DATA

CONTROL 7 QUALITY PACKAGE

DOCLJIENT ASSURANCE
PLAN

SYSTEM
INTEGRATED
TEST
PLAN

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - -



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — V. -~~~~V. _V~~VV._~~_V. -
~~~: 

- - -V. ,

I I
DESIGN DETAILED DESIGN .1 IMPLEMENTA T ION

I ___________________________________

I DETAILED
SOURCEI

PROGRAM
CODE 1-4DESIGN CODE

SUBSYSTEM R E V I E W
1

_____________ __________ __________
____________ __________ _________

_______ __________
DATA

_______ __________I _______

DETAILED

DA TA

CODE OUTPUT

-

~~ PR EPARAT~~~~}1

DEBUG F—I SOURCE ’ ~

____________ ~~~I

DESIGN

____________ I

ANALYSIS I

_______________ I FLOWANALYS ANDI DESIGN

TRADES ______________ ___________

I

__

MODULE
TEST MODULEDEVELOP

PROTOTYPE INPUT! DATA
ri

TEST
GENERATION r

_____________ DESIGN

DATA
FERFORMANC7

~

DEVEL OP I • PREPARE BAS E

h

REQUIREMENTS DESIGN
OR • PACKAGE AND

CDR DATA DEV ELOPMENT I.
ALL OCAT ION SIMUL AT

• AND REVISION IC SPEC

H[DEBUG
SOURCEDETAI LE D SOURCEPREPARE PROGRAM CODE CODE 1—4 a

PR EPA RATION REVIEW

PR EPA RE I DETAILED

~ DATA I ANA L Y S I S -l TEST DATAPDR DATA DATA FL OW

BE N C~~ARKS DESIGN

V_

~

I

I DESIGN I MODULE I ~~~ I
PACKAGE

TRAD ES [GEN ERATI ON TESTAI4ALY SAND DESIGN

B SPEC SUBSYST EM

INPUT/
OUTPUT

STAN DARD S

SYSTEM

GENERA Ti ON GENERA

AUDIT

PRELININARY

~~~~~~ P~~NT
~~~~ LEM ~ CON FI GURAT I O

J. MAN AGEMENT/REPORTING

UPDATE
PREV IOUS
SPECIFI-

/~~ITICAL

REVIEW

CATIONS

/ DESIGNDESIGN
/ REVIE W(PDR)

______________________ / (CDR)

PRODUCTS PRODUCTS

COMPUTER PROGRAM COMPUTE R PROGRAM
REQUIREMENTS DESIGN
SPECIFICATION SPECIFIC ATION
(B SPEC) (C SPEC. BUiLD TO)

PRELIMINARY

~
DATA BASE

USERS MANUAL SPECIFICATION
FIN AL INTERFACE CRITICALCONTROL DOCUMENT DESIGN REVIEW
DAT~ BPSE SPECIFICATION

DATA PACKAGE

I~
PRELIMINARY ~~~~-‘ TEST PROCEDURES
DESIGN REVIEW
DATA PACKAGE

TEST PLAN
/

-

- ~~~~~~~~~~~ -~~ - - ~~~~~~~~~~~~~~~~~~~~ -. ~~~~~~~~~~~~~~~~~~~ ~~~~~~~
— --V

-- ~~—V_

IMPLEMENTATION TEST AND INTEGRATION

SOURCE SOURCE I
DEBUG CODE CODE SUBSYSTEM

~TION REVIEW REVISION TEST

INTEGRATION SYSTEM ACCEPTANCE

MODULE
TE S T

MAINTENANCE
I

WMENT I

£ SOURCE SOURCE SUB S I
DEBUG CODE CODE T

YSTEM

RAT ION REVIEW REVISION

H

I DELIVER Y
MODULE I

IATION

I (SYSTEM
L..J TEST _______________________________

I DATA ______ I
LATION GENERATION ‘ I

STANDARDS
AUDIT I

I CONFIGURATION
I MANAGEMENT

PROBLEM I
GIIRATION REPORTING

-~AEN T/
B!
rING

SPECIFICATIONS .

I /ACCEPTANCE\

I / TEST
~\

PRODUCTS PRODUCTS

COMPUTER PROGRAM TEST RESULT
DESIGN SPECIFICATION REPORTS
(C SPEC , BUILT TO)

ftP MAINTENANCE
USERS MANUAL MANUAL

CODE , LISTINGS DELIVERED
SYSTEM

DATA STRUCTURES (INCLUDING
~‘ MD VALUES ALL UPDATED

TEST CASES
N4D TEST - -

DATA

FI GURE 4-6 SOFTWARE DEVELOPMENT PRocEss MODEL 414

- -

-V

Table 4—2 Act ivity Explanations

REQUIREMENTS ANALYS IS ACTIVITIES
Requirements Definition

- interpret and itemize requirements provided in the system
sped fi cation

Opera ti ons Conce pt Develo pment
- define the system concept i dentifying the functions or processes

to be performed and their interactions
— define user interface at high level

Requl rements Al 1 ocati on
— allocate the requirements to the functions or processes to be

performe d
- identify hi gh level performance requirements

Softwa re Top Level Desi gn
- i dentify wh i ch functions are candidates for implementation in

sof tware
- develop a h ierarchy of those software functions
- identify at a high level the data flow between those functions

Data Base Top Level Design
— identify requirements for major files or data bases

Requirements Traceability Analysis
- assess the requirements allocation and top level desi gn for

coverage of itemized requi rements

Interface Control Document Development
- define interfaces between major system components or segments

Test Requirements Analysis
- develo p prel iminary test and integra ti on requiremen ts

Management Pl anning and Control
— document management , quality assurance , confi guration management

plans
- establish development standards and conventions

4-15

4

- - —~~~~~~~~ -
- -

~~~~~~~
- - -- -

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - V -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_____ -V

I

Table ~-2 Activ ity Explanations (Continued)
(

Prepare SDR Da ta Pac kage and A Spec
- document results of the technical requirements analysis activi-

ties in form of software system requirements specifi cation
(A Spec)

- prepare data package for system design review

System Des i gn Rev iew
- cus tomer rev iew of top level des ign

4-16

- ~~~~~~ ~~~~~~~~
-r—--~—- --

~~~~~~~~~~~~~ 
~~~~~~~ 

Table 4—2 Activity Explanati ons (Continued)
I’-

PRELIMINARY DESIGN ACTIVITIE S
Des ign Sof tware Arch i tecture

- software hierarchy to CI leve l
- CI interfaces esta b l ished

Subsystem Design
- process design
- algor i thm develo pmen t
- define system inputs and outputs

Data Base Oeslgn
- data base structure established
- data d e f i n i t i o n

Performance Requ i rements All oca ti on
- storage and timing allocations

Develop Desi gn Simulator
- prepare simulation for design analysis

Develop Prototype
- prototype coding for desi gn/concept analysis

Prepare Benchmarks
- prepare benchmarks for performance anal ysis

Update Requirements Specification
- make appropriate modifi cation to requirements based on SDR and

prel iminary design activities

Test Planning
- develop plans for assessing the software systems compliance with

requirements

Prepare PDR Data Package and B Spec
- document results of technical preliminary design activities In

form of preliminary design specification (.8 Spec)
- prepare data package for preliminary design review (PDR)

4-17

V --V -- -
~~

— -. ——

- —

Table 4—2 Activity Explanations (Continued)

DETAILED DESIGN ACTIVITI ES
Detailed Program Design

- CI and module design
- detailed interface definition
- algorithm detailed design
- representation of design by design charts
- local variable Identification

Detailed Data Design
- complete data element definition

Input/Output Design
- detailed desi gn of Input/output variables , fo rma t, media to be

used

Da ta Flow Analysis
- Trace data flow between modules throughout system

Des i gn Anal ysis an d Tra des
- assess design using simu l ator , prototype code , or benchma rks
- evaluate alternative designs

Standards Audit
- insure design representation complies with standards and conven-

t ions

Problem Reporting
- maintain des i gn problem reports
- attend configuration control meetings
- track problem resolution

Update Requirements and Preliminary Desi gn Specifications
- modify specifications based on PDR critique or detailed design

activ ities

Test Plann ing an d Prepara tion
- develop test procedures for CI and system tests

4- 18

—V - ‘1 A.~~~~~~~~~ - ~~

- -~~~V ~~~~~~~~~ _~~~
~~~~~~~~~~~~~~~~~~~~~~~~ - - — 

-- 
—

Table 4— . Activity Explanations (Continued)

Prepare CDR Data Package and C Spec
- document results 0f technical detailed design activities in

form of computer program design specifications (C Spec)
- prepare critical desi gn review data package

Critical Design Review
- customer review of .ietailed design

ii t

4-19



-‘-- - -~~~~~~ ~~~~~~ . 
- 

---~~~~~~~~~~~~~~~ _

Table 4—2 Activity Explanations (Continued)

‘S

IMPLEMENTAT I ON ACTI V ITIES

Source Code Preparation
- code design
- code entry (keypunch , in terac tive)
- compilation/assembly
- prepare users manu al

Debug
- location and correction of compilation/assembly errors

Source Code Review
- development team review via code inspection , walkthrough , etc,

Source Code Rev ision
- revisions to code
- entry of revisions
— recompilation/assembly

Module Test Oata Generation
- develop test data for module

Module Tests
- conduct tests on individual modules

Data Base Development and Revision
- develop data structures
- establish data values
- modify as a result of tests

Configuration Management/Problem Reporting
- maintain and control changes to source code
- ma intain design and code problem reports
- attend configuration control meetings
- track problem resolution

Standard Audit
- insure source code Is prepared according to standards and

conven tions

4-20

_ _ _ _  ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~



— —-- -~~~~--- -~~~~~~~~~~~~ =--- ~—‘- - -~~~~~~~~~~~~~~~~~ --
~~~~~~~~

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1

Table 4—2 Activity Explanations (Continued)
~5 ,

Update requirements, preliminary design , and detail  des ign speci fications
- modify specifications based on activities perforii~d dur i ng

Implementat ion, problem report reso1uti on~ CDR cri t ique

System Test Case Genera tion
- develop test cases to be used

System Test Data Generation
- develop test data for system testing - 

-

(

4-21

_ _ _ _ _ _



- ~

,- 
- ‘

~~~~~~~~ 

—
~:

‘—

~

-V__

~ ~~

—

~

~~~~~~ ~_V_~V~~V

Tab le 4—2 Activity Explanations (Continued)
‘ _

TEST AND INTEG RAT I ON ACTIVITIES
Subsystem Tests

- perform c~cr tests
— prepare test results

Integration
- perform required bui lds , compilations , etc. to l i n k  code as

system 
-

System Tests
- subject software to established system tests
- prepare test results

System Ma intenan ce
- i dentify and correct problem i dentified during tests
- reenter code
- recompile
- prepare maintenance manual

Update Requirements , Preliminary Design , Detail Design Specifi cations ,
Source Code , and Data Base

- modify speci fications , source code , and data base based on
results of integration and test activities

- prepare for delivery of system

Configuration Management/Problem Reporting
- main ta in  and control changes to source code
- attend confi guration control meetings
- track problem resolutions

Acceptance Test
- perform acceptance tests

I _
i

4-22

— ~~~~~~~~~~
- . _

~iIE~—1~~T— -~- —‘—- —V - -



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V~V ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ -~~- -~~~~

PHASES

RESOURCES

SYSTEM ENGINEERS - X X X X X
SYSTEM ANALYSTS x x x x x
QUALITY ASSURANCE ANALYSTS X X X X X
TESTERS X X X X X
PROGRAMMERS 

______ 
X X X X

PROGRAM LIBRARIANS 
______ ______ ______ ______ _____

DATA ENTRY/KEYPUNCHERS 
_______ _______ 

X 
- 

X X
OPERATORS 

______ ______ ______ ______ ______

CONFIGURATION MANAGEMENT 
______ 

X X X X
MANAGEMENT X X X X X
ADMINISTRATIVE SUPPORT 

— 
X X X X X

TECHNICAL PUBLICATIONS X X X X X
SP ECIALISTS such as 

______ ______ ______ ______ ______

OPERATIONS RESEARCH ANALYSTS X X 
______ ______ ______

HUMAN FACTORS ENGINEERS X X 
______ ______ ______

SOFTWARE SCIENCE SPECIALIST X X 
______ ______ ______

STATISTICANS 
- 

X X 
______ ______ _____

BEHAVIORA L SCIENTISTS 
______ ______ ______ ______ ______

AUDITORS 
______ ______ 

X X X
FACILITES ENGINEERS 

- X X 
______ ______ ______

TRA INING AN ALYSTS AND ______ ______ ______ ______ ______

INSTRUCTORS 
______ ______ ______ ______ ______

METHODS AND PROCEDURES 
______ ______-

SPECIALISTS 
_______- _______ _______ _______ ______

APPLICATIONS SPECIALISTS 
______ ______ ______ ______ _____

RELIABILITY ANALYST x x 
______ ______ _____

‘-V 
-

4-23



of these resources. The resources also include equipment such as

computers, terminals (TTY , CR1) , keypunches , and RJE term inals .  The

equipment resources are only modelled if contention for them introduces
a possible delay in the corresponding activity .

The resources are consumed or utilized at the activity level . This
allocation of resources to activities is not shown in Tabl e 4-3, but i s
done within the simulation model of each activity . The allocation of
personnel resources is generally done at a team level . Thus , one input
to the model -,.,iul be the expected composition of the various teams or
groups comprising the development orgaiiization . A chief progranrier

team-like organization was modelled in the prototype.

It is anticipated that the resources will be modelled , not only by type,

but by productivity levels within the type; i.e., senior and junior l evel
progranmers will have different productivity rates. Only one l evel was

modelled in the prototype.

The last aspect of our model of the software development process is the
identification of the factors that influence sizing decisions within the
activity models. Considerabl e work has been done in cost estimation ,
software engineering , and software psychology research oriented toward
identifying the factors which influence the effort required to develop
software. References are identified in Section 7.

In the model , an activity is a sequence of tasks within a software
development that consumes or utilizes resources. The amount of resources,
or the effort , required to perform those tasks is a function of the goals
of the activity , the size/difficulty of the systems or subsystem being
developed, the resources that are available , and the productivity at which
those resources perform (personnel ) or can be utilized (development tools).

4-24

- ~~~~~~ —----- - - - - —~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- - V - - -

~~  

- - -



— -‘V. ~~~~~~~~~~ 
—

Some of the factors that comprise the goals , size/difficulty , resources ,

and productivity were identified qualitatively as inputs to the simulator

in Table 3-1. It is the intent of this section to describe our concept
for modelling their impact quantitatively.

The goals of an activity are related to the products that activity
produces or to which the activity contributes , the required quality of
those products, and the schedule imposed on the activity . The size/dif-
ficulty of the system is represented by the number of subsystems to be
developed , their estimated size in lines of source code, the size of the

data base to be developed , and the complexity of the application . The
complexity is a calculated rating based on the application type , the

processing t ime requirements (real time , on-line , time-constrained , or
non— time constrained), the anticipated memory utilization , and the
dependency on hardware development. The resources available are the
personnel . Their productivity is impacted by their organization ,
experience , the development tools to be used , an d turnaroun d time on
the development computer. These factors are identified in Table 4-4.

The concept for how the factors will be used to model an activity is
shown in Fi gure 4—7. The factors related to the size/difficulty of the

task are the input model parameters identified in Table 3— 1 . They will

be combined with the goals of the development (products, quality , and

schedule), and utilize product/effort transformation relationships to

derive the effort required to accomplish the activity . Schedule impact
on the effort required to perform an activity is modelled in these
relationships.

The resources available and their organization will be combined and
utilize resource productivity figures to derive the expected productive

effort achievable. The affect of team structure, basically in the form

of comunicatlon overhead which negatively impacts productivity , is

4-25 - -

_ _ _ _ _ _ _ _ _ _ _ _  - - - - ~~~~~~~~
- - ~~~~—~~~ -~~--- - -~~-~~~~ - - .‘~~~~~~~~~~~~~~~~~~~ -—~~~~~~~~ —‘



- VV ~VVV ~~~~~~~~~~ - -- V~~~ -V ~~~~~~~~~~~~ ——  V 
;_

V_V V -V ___-V.~ 
-
~~~~~~

Table 4-4
t Factors Which Affect Activities

DEVELOPMENT GOALS

Produc ts
- number
- type

Qua l i t y
- error rates

Schedule
- mi lestones

SIZE/DIFFICULTY ESTIMATE
System Size

- number of subsystems (CPCPs)
- number of lines of source code (language type , percent

new code)
- data base size (number of data sets, number of preset

values)

Complexi ty
- type of application
- processing time requirements
- memory utilization
- hardware dependencies
- rating

RESOURCES
- team composition (type)
- staff mix (personnel type, exper ience , number)

PRODU CTIVITY
- personnel productivity
- development tool impact
- turnaroun d time

4-26

-V — -— -V —-— --— — —--—-V- -V - --—-a-—

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~ -- - - ~~~~~~~~~~~~~~~~~~~~~~ -~ -~ - -~~~-~~----~~~.~~~~~~- - - V . .~~~~~ ~~~~~~~~~ ~~~~~~~
—-

— -
~~~

-,- —V

“V

I ~I-
—
4-

.4.’

O~
_

_ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  
U

I— C

—

~ —so ‘~-o ~~~~~- U..

I-4- -~~~ +-
~ z—~~ — 4.’o —~ n~~~ —

~~ 

_ _ _

~~~)._ ~.J ~~ 4

L_~~
_ _ _

~~~J
•

~~ 1 —i

~~~ :i ~L!JL
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

J

4-27

— V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



•
-V V- ~~~~~~ ~~~~ V~~~~ ..-. V_ .__ r ”’

~~~ —

taken into account in this portion of the model . The result of the
compari son of effort required with productive effort achievabl e will
provide cost and resource loading requirements in the normal mode of
operation . As an alternative mode of operation , a resource loading H.
plan can be input and schedule can be output .

The key to the concept is the development of the product/effort
trans-formation relationships and the resource productivity matrix. Our
current approach to evolving these is the use of empirical data to derive

H f i r st approximations and then using the simulator in a calibration mode;

I.e.-, tuning the simulator by comparing simulated results with past

historical developments or on-going developments. Currently these
activity models are still at a conceptual stage. Very high level models
were used in the prototype to be described in the next section .

-V

4-28

4.4 MODEL UTILITY

The conceptualization and decomposition of the software development
process as a sequence of activities , as shown in Fi gure 4-6, provides
a model which can be used at several l evels. At one l evel , the model
can be used as a checklist for planning and progress status. The list
of activities typically performed during a software development , and the

interaction can be used to plan the activities to be performed in a future
developn,ent. Once this plan is established , completion of these acti-
vities can be used as a status measurement more accura te than the
no rmal l y imposed milestones.

At the nex t l evel , the model can be used as a PERT-COST tool . The current

prototype tool that has been developed has the capability with which
activity delay times could be modelled as distributions representing worst
case , most likely, and best case estimates of the schedules for those
activities. The simulation would then result in the calculation of the
expected time in which the network of activities woul d be completed. An
enhancement to the PERT-COST approach available with our simulation

approach is modelling resource usage as a function of time also .

A third level , that at which the prototype simulator was developed , is
a high l evel process model. At this level , the activities are modelled
at a relatively high level . Sensitivities in the development plan and

in the assumptions made in the model development could be analyzed . At
a high l evel , impacts of using different techniques and tools could also
be analyzed .

The last and most detailed level , -is a detailed process model. At this
l evel all of the concepts introduced in paragraph 4.3 would be utilized

to model the activities . The analysis capabilities possible in the
process model mentioned above would be of greater fidelity due to the

finer detail of the activity models. At thi sleve l of capability , the
full complement of support to the management planning and contro l of a

4-29

L . — ~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ — - - ~~~~~ - V - ~~~~~~~~ — -V — - —— **~~~~~ -V-V~~~~~~~ - - - -~~——~~~~~~~~~~~~~ ~~~~~ --— ~----‘ - - V- - --

- - - -~~~~~~~
- - - ~~ V_V ~~~~~~~~~~~~~~~~ ~_ — - -.- ‘-- - —.

-
~~~~~~

-
~~~~~

-

~~~~~~~~~~~~~~

S

softwa re development would be provided . This support would span project
planning , project control , tec hnolog y assessmen t, and contingency planning ,
as shown in Table 4-5.

Table 4-5

Utility of the Software Development
Process Simu l ator

• PROJECT PLANNING • TECHNOLOGY ASSESSMENT
- COST ESTIMA TION - ASSESSM ENT OF IMPACT OF NEW
- TIME REQUIREM ENTS TOOLS , TECHNIQU ES , AND
- RESOURCE REQU IREMENTS METHODOLOGI ES

• PROJECT CONTROL • CONTINGENCY PLANNING
- PERFORMANCE ASSESSMENT - IMPACT ASSESSMENT
- BOTTLENECK ANALY SIS
- RESOURCE TRAD EOFF ANALYSIS

4-30  

- - - - -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -- -— V -



~~~~~~ -‘- - -~~--~~~~~~~~~~ 
~~~~ -— -V -~- -- --- — - Z~~~~~~~~ -—-—--V --V —- -— — —-‘- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION 5

DEVELOPMENT OF A SIMULATOR

5.1 PROTOTYPE DESIGN CONCEPTS
To further evaluate the feasibility of simulating the software development

process , a prototype simulator was constructed and demonstrated by modeling
a past software development. The prototype was developed with the concept
tha t It could eventually be extended to provide a full software develop-
ment process simu lation capabil ity .

During the construction of the prototype tool , there were severa l design
decisions made. Two of these decisions affecting the implementation of

th~ s imu l a tor  are descr ibed here . These are fol l owed hy a genera l de-
sc~iption of the prototype simulator tha t was built , and the experiment
performed using that prototype .

The f irst decision made was to use a process-oriented v i e w  in  the simula-

tion instead of the traditiona l event orientat ion. An event-or iented view
tends to place a simulation at one level of detail, since all state changes
in the system being modelled are represented by events tha t occur at tha t
particular level only. The process-oriented view l ends itself to multi-
l evel modelling since process descriptions allow one to describe proc-
esses and their relationships as sequences of activities without having

to explicitly sequence events, where an activity can easil y be a process
wi th its own set of act iv i t ies .

With a process-oriented view , the system be ing modelled is viewed as a
collec tion of interacting processes , wi th the interactions controlled

and coordinated by the occurrence of events. rhe advantages of this

view are many . First , a process-oriented model is a more natura l way
to express the structure of a system . Secondly. the user does not have

to define and keep track of the events whic h signa l state changes In the
system since the simulator does the event sequenc i ng . Furthermore , a 

V~~~~~~ V~~~~~~~~ - V_ _  

5-1 

—~~~___



process orienta-tion automatically provides for process structuring .
Finally, a process, with all of the event definition and sequencing it
implies , can be a sub process of ano ther process , contain its own sub-
process , or be both. This point shows another advantage to the process-
view; i.e., that the individual processes that make up a system being
model led can be defined in varying level s of detail , depending on a
user ’ s desires and his knowl edge of the process in question . Note also
that this l evel of detail does not have to be consistent among the
processes in a system for the model to be usable.

The second design decision made for the software development process
simulator was to use the technique of path expressions as a simulation
too l . Our use of path ex press ions has closel y followed the work of
Habermann [HABE 75], who defined a notation for describing the synchro-
nization and coordination among processes to be used as part of a program-
ming language. This work has been expanded and built upon in flow
express ions [SHAU 78], used to describe the sequential and concurrent
flow of entities through software components , an d i n even t ex press ions
[RIDD 76] , used to describe software system behavior. These ex per iences
with path expressions in software system descriptions provided a natural
extension to simulation applic ations.

When simulating large system s , i~ we assume a process-oriented v iew of
simulation as we have discussed above , one of the greatest problems is

being able to explicitly show the interactions among processes in the
system, especially at a user l evel . If one wanted to know the proce-
dura l flow th roug h a g i ven set of processes , the only method availab le

was to trace through the actual code of the processes. As path expres-

sions are concerne d with the i nterac tions between processes , it was a

natural extension to apply then-i to process-oriented simulat ion to aid

in describing the behavior of systems.

5-2



-

~ 

~~~~~~~~~~~~~~ 
- - - ~~~~~~~~ V ~~~~~~~~~~~

_ _
~~

.- ~~~~~~~~~~~~~~~~ ~~~~~~V V •~ VV~~~~~~~~~ -- ~~~~~~~~~~ I

5.2 PROTOTYPE IMPLEMENTATION
With the above desi gn decisions in mind, a prototype software development
process simulat or was built. A set of simulation tools which we had
developed for modelling computer systems , ([WONG 78a], [WONG 78b]) , were

utilized. Among these were : MORTRAN , a macroprocessor used to provide
a FORTRAN preprocessor with structured progranmiing constructs; and ,
SIMTRAN , a process-oriented simulation language based on GASP IV [PRIT 74].
The relationships between these tools -is shown in Figure 5-1.

SIMTRAN ASP
Run-T im Run-Tim
Library Libra ry

I
~~~~~~~~~

GR I PT I ON
~~~~~~~~~~~~~~~~~~

IM TRA
~~~~~~

__*[ FORTRAN 
H 

LINKER/

SIMULATION

Figure 5-1
Prototype/Tools Relationships

At the core of the prototype is the Path Expression Parser / Interpreter
(PEP !). PEP! cons ists of two bas ic parts : the Path Expression
Interpreter (PE!), and the Path Expression Parser (PEP). The purpose of
the Path Expression Parser is to read a user ’ s path expression (written

5—3

p..- 
~~~~~~~~~~~~~~~~~~~~ - 

-a-

- ----— -~~~~~ - -V . -- .-- - --- - - - --V--- — - —-V


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -—--
~
---‘- -----------

~ 
: — ~

-
~
-
~~~

— — -—-
~~~ 

——— - V

In the Path Expression Language - PEL) and generate a table such that PEI
can read the tabl e and control the execution and synchronization of the
processes in the simulation. PEI reads the table from PEP , determining

which processes are to be started, which order they are to be performed
in , and when they are to be started .

Figure 5— 2 shows the structure of PEPI. To use the system , a user must
provide four  t h ings :

1) A PEL source file describing the simulation ’s path;
2) A list of process names to be used in the model ;
3) A SIMTRA N process library for the processes to be used in

the simulation;
4) A deck of parameters for a given simulation .

Process Nam

PEL PEP -—
~~~~ Path

Ta b les
Model

simY l

~

t

~~~

j

~~~~~~~~~~~~~

GAsP Iv

Simulation
_____Reports

Figure 5-2

Pa th Expression Parser/ Interpreter Overv iew

- t
5-4

__ -_~~~~-..~~~~~~~~~~
- -.- - — V

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

_-_~~.__ - —

Path expressions are a quick and ea sy way of showing the sequencing
t — of processes , assumi ng that the processes have been defined . Through

a relatively simple syntax, descriptions of parallel and/or sequential

process ing ~ithin the system being described are easily generated .

For example , g iven :

PROC1 : (PROC2 ,PROC3) ,PROC4

as a path expression where a coma indicates process sequencing , a colon
shows process paral le l i sm, parentheses indicate process groupings , and

all strings are process names , a di agram of the same sequence woul d
appear as:

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~~~

The advantages to thi s technique are readily apparent. Once a given
set of processe s has been defined to the level of detail desired , one
needs only rearrange the path expressi on to change the simulation . The
implication here is that the generator of the path expression does not
have to know about simulation to experiment with a given model . Th is
approach leads to a highly modular simulation , which gives the simulation
builder enormous flexibility in adding , deleting , or modifying the
processes involved . Further, once a process has been properly defined
using this technique, it can be placed in a library of “conmion” processes .
The process can then be used in as many different simulations as appli-
cabl e by writing the proper path expression. Another advantage to path
expressions is inherent in their simplicity : given a set of processes ,
the two operators”:”and” ,” , parentheses, and an understanding of their
use , any number of simulations can be easily constructed and , more
importantly, rea di ly un derstood .

(
5—5

A . ~4 



- —~--—w~:- -vs~ ~~‘~~~~~
- -

PEP will read the process name list and the PEL source to generate the
path table for PEI. The process name list is just a list of names , one

per card image , where the first six characters on the card are assumed
to be process names. There must be a one-to-one relation between the
names in the list and the processe s in the SIMTRAN process library . PEL
has severa l features of r~ote : 1) it implerr-er~ts the path expressions des-
cribed before; 2) it is totally free-format; 3) a semi-colon
indicates the remainder of a line is conmient; and , 4) it has macro-
definition capabilities. Notice that macros allow easily repeating

processing sequence s, and also that macros can contain other macros.
Using this syntax , as shown in Figure 5-3 , one defines the path
expression of the simulation to be performed . This iforrnation is
then used by PEP to generate path tables . These tables contain infor-
mation about the sequencing and synchronization of processes that were
used in the pa th ex press ion. PEI , reading the path tables , executes
the proper groups of processes as defined in the path expression , so
that all sequenc ing and synchronization is done as defined by the user.
However , for PEI to work properly, it first needs the library of SIMTRAN
processes . The library must contain a process description for each
process name used in the path description. As an option , the use r can
describe additional processes besides the ones availabl e in the process
library. These processes would be described using SIMTRAN [WaNG 76].

F i n a l l y, GASP will read the parameter deck provided by the user for such
control values as the start time , fina l time , an d seeds for ran dom
number streams . These parameters are used by GASP and SIMTRAN run-time
routines to control the execution of the simulator.

Once a simulation has been performed, PEP! provides certain output

reports . The report s from PEP identify any syntax errors in the user s
path expression and they display , by a series of tables , the results of
the parsing of the path expres sion. The reports from PEI identify the
processes that are i n iti ated . S!MTRAN an d GASP IV also provide standard

5-6



-— --V — -V --V -V--_—-—-- 
~~~~~~~ ~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~•VT~~
_V_

~ - 
V~ V _~~~V_ V•~~_~

simulation reports. These reports provide the results of the simulation.
They contain resource utilization statistics , wait time and queue length
statistics , and detailed traces of the simulation . The net result of
this information is to tell the user how his model performed under the
conditions specified in his parameter deck.

Figure 5-3 , below , describes the syntax of the Path Expression Language
(PEL) and Figure 5-4 provides an example of the usage of the language to
specify a process struc ture.

Meta Symbols

• I is an alternation of symbols;

• [ ] is zero or more repetitions of the enclosed symbols;

• %[]% indicates logical grouping ;

• ::~ indicates replacement;

• - [ ] -  indicates zero or one occurrences of the enclosed symbols.

PEL Definition 
-

<simulation description> : :—<headlng>-[<macro table>]-<simulation>END

<heading>: :—8EGIN<title>
<title> : :-.<character4<character>]

<macro table> : :.—MACRO—TABLE<rnacro definition>[<macro definition>]

END-MACRO

<macro definition>: :.-.ddentifier>...(<path expression> )
<identifier> : :—<character>[<character>)

<path expression>: :~ .cterm>[,<term>]
<term>: :_cfactor>[: <factor>]
<factor> : :—~<identifier>>

<simulation> ::— SIMULATE— . (<path expression>)

Figure 5—3
Backus-Naur-Form for Path Expression Language

5-7

- - ~~~~~ V j ~~~~~~~~~~~~~~~~~~~~~~
’ 

~~~~~~~~~~~~~~~ VVV V~~~~~~~
_I

~~~~~~~~~~~~~~~~~~~~~~



- -~~~~~~~~~_  - ~~~~~~~~~~~~~~~ ~~~~~~~~ ~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~ — V

4.—.

BEGIN EXAMPLE 1

MACRO—TABLE

A~ (X l ,Yl )
8= (X2:X3,Y2 ,A )

END-MACRO

SIMULATE (A ,B:A ,X l ,X2:Yl )
END ;EXAMPLE 1

SIMULATE statement represents the following network of processes :

Xl-Yl

Figure 5-4
Path Expression Language Example

5-8



- - —---V- -V-V - .  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-_ ~-.V- -—-, -— -

5.3 PURPOSE OF EXPERIMENT
(The prima ry purpose of performing an experiment was to determine the

feasibility of the basic capabilities necessary for the simulation of
the software development process. In addition, the experiment illus-
trated the utility of the path expression and process-oriented approaches ,
and provided some experience during which lessons could be learned and
refinements in our approaches could be accomplished .

5.4 DESCRIPTION OF THE EXPERIMENT

The experiment was oriented toward model ing a past large-scale software
system development. The simulated results were then compared with the
historical data that was maintained about the development effort . This
approach to an experiment is more modest than a full validation of the
simulation model in which the simulated results would be used to predict
the actua l results , and a comparison of predicted versus actual would
provide a validation criteria. Our experiment was more a calibration of

the model to assess if , in fact , a devel opment effort could be modelled
to some degree a-f accuracy . Calibration is utilized by analytic tech-
niques also (RCA PRICE-S and Putnam ’s SLIM) to tune the anal ytic model
to the development organization . We envision this practice also
pertaining to the Software Development Process Simulator , where var ious

parameters or interna l tables within the simulator could be tuned to a
particular development organization by modeling past developments.

The software system development that was modelled consisted of three

major subsystems (or CPCI’s). The system was a coaiuand and control
ground system developed under contract for the Air Force . The three
subsystems ranged from 75 ,000 to 150 ,000 lines of JOVIAL source code each
(including coimients). Complete statistics on the development activity
were rnaintained , including the number of design problem reports , software
problem reports, and source code statistical profiles , as well as man-

power expenditures .

5-9

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~ -~~~ -- - -~~~~~~~~~~~~—

—-V - -‘ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- -_ V - - -

The development was performed in strict accordance with military standards
with staggered mi lestones for each of the subsystems . Most current cost
estimation techniques do not model this incremental subsytem development ,
as shown in Figure 5-5. Our approach to modelling this development tech-
nique will be illustrated later in this section . m e development that
was modelled , however , only consisted of detailed design , implementation ,
test and integration phases since the CPCI’ s were modifications of an
existing system, and a requirements analysis phase was unnecessary . The
flexibility of the simulation approach to model only those phases per-
formed during the development will also be illustrated . Some simplify ing

assum pti ons were necessar i ly ~de because of the budget and time limi ta-
tions of the study. No constraints were imposed because of the restric-
tions of the simulation approach. These limitations to the experiment

are described in paragraph 5.5. The details of the experiment model follow .

Four types of resources were mudel l ed . These resources represent the
four types of personnel used : System Engineers (SYSE), Analysts (ANLT),

Prograniners (PROG), and Qual ity Assurance/Test personnel (QA). Grouped
with the quality assurance and test personnel are configuration manage-

men t personnel , program support librarians , and other support personnel .

The simulation also consisted of two major types of processes, repre-

senting different perspectives in the development of a system. The first

type views a software system as a whole and models the integration of
var ious CPCI ’s (Computer Program Configuration Items) into the final

del i verable product. Secondly, there are those processes that are

performed during the development of a particular subsystem or CPCI, and,

hence, view the system as consisting of the particular CPCI . Thus, at
a system l evel , the processes modelled were:

• TSTP: Test Plan Development;

• TPRD: Test Procedure Development;

• SSVTI & SSVT2: Subsystem Validation and Test.

5-10

-V —

_________ - ~~~~~~~

~~~~~~~~~ ~~~~~~~~~
—_—_ . 

~~~~~
, _ _ _ — --.• - _-

~~~~~ 
—- - —_ — _- V - — -~~~

___________ ___________ 

~~~~~—j zzcLEz~J4TATIoi H ~~STj-

L~
RE
~

NTS
H

PRELiM~~MY~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

SDR POR ~1~~jH IMPt.EIENTATI~ IH TEST

CDR3 VATSR

— LE~~NO

SDR SYSTEM REQUIREMEMIS
REVIEW

POR PRE LIMINARY DESIGN
- 

REVIEW
COR CRITICAL DESIGN

REVIEW
fATSR VALIDATION ~ ACCEPTANC~TEST SPECIFI CATION

REVIEW

Figure 5—5 Incremental Subsystem Development

5—11

- ----—-V- ---- -— -V- - V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ V V



~

At the subsystem level , or for each CPCI , the processes modelled were :
• DPD: Detailed Program Design;

• CDB: Coding and Debug ;

• 1ST: Subsystem Testing;

• IMD : Integration and Maintenance Support .

The motivation for the above breakdown of processes is threefold. First ,
these processes are the first version of a library of generalized pro-
cesses that can be used to simulate any software development. To faci-
litate this approach the processes are parametric , that is, certain
variables are passed to the process to represent the specific system
being developed . Secondly, we can s imula te severa l CPCI ’ s being

developed concurrently with phased milestones , by specifically providing
generalized processes for simulating CPCI development. Third , we demon-
strate the fl exibility allowed with simulation by only modelling the
processes performed in the subject development.

For the prototype s imulat ion , there were three individual CPCI’s that
were all portions of the same system. For convenience, these subsystems
were called Subsystem 1 (SS1), Subsystem 2 (SS2), and Subsystem 3 (SS3).

Process scheduling and interaction is shown in Figure 5—6 with the
corresponding path expression shown in Figure 5—7 , as ou tput from PEP!.
Note the conciseness with which the information in Figure 5-ó is expressed
in Figure 5—7 .

5.5 LIMITATIONS OF THE EXPERIMENT

At present , the prima ry limitation of the experiment is the fact that
the l evel of abstraction of the simulation is high. The relationshi ps
internal to the process descriptions representing the activities were
not model l ed at a very sophisticated l evel of detail. In the processes
that were defined for the prototype model , the approach was to view
each activity as a consumer of resources for various amounts of time .

5-12



~~~~ ~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

I
I i i 2 1 3 4~~ 5 t 6 I 7J81 9L lO Il l1l 2 (13 1 14 1 1 5 1 1 61 1 7 1 1 8 1 MONTH

~~~~~~~~~~~~~~ IMD1 SUBSYSTEM 1

IMD2 SUBSYSTEM 2

DPD3
C063

IMD3 SUBSYSTEM 3

TSTp
TP RD

SSVT1
t 

SSVT2 
~~~~~ATION

CDR VATSR ACCEPTANCE
TEST

LEGEND

DPD-i DETAILED PROGRAM DESIGN
CDB i CODING AND DEBUG
TST 1 SUBSYSTEM TEST
IMDi INTEGRATION & MAINTENANCE

SUPPORT

TSTP TEST PLAN PREPARAT ION
TPRD TEST PR OCEDURE DE VELOPMEN ~

SSVT1 SYSTEM TEST & INTEGRAT ION
SSVT1

CDR CRITICAL DESIGN REVIEW
VATSR VALIDATION & ACCEPTANCE

TEST SPECIFICATI ON REVIEW

Figure 5-6 Process Flow

(

5—13

~

~~~~~~~~~~~~~~~~~~ 
-‘ z r~~~~~

- 
- -V 

~ S.~~~ -V-VS-V S.~-V -V

05/29/79 19.6930 PAGE

PATH EXPRESSION PARSER VER S I ON 1.5

1 BEGIN SAMPLE
2
3 SOPS SAIIFLE MODEL
4
5 BY J . A .  MCCALL
6 A.H. STONE
7
6 APRIL 1979
9

10 MACRO-TABLE
11 DESI ON •
12 COO I NG s (CDBI :
1 3 TEST • (TST1:TST2:Tsr3)
14 I NTEG • (IMD1 : I MO2~15 END-MACRO
16
17 ; BEGIN THE SIMULATION
18
19 SIMULATE ‘ (DES IGN :TSTP , ; DES I GN PHASE20 COD I NG : TPRD , ; COOING PHASE
21 TEST :SSVT 1 , TESTING PHASE
22 I NTEG :$5V12) ; I NTEGRATI ØN PHASE
23
24 END ; SAMPLE

24 LINES PROCESSED
0 NON-FATAL ERRORS

FATAL ERRORS

PROCESSIN G COMPLETED

Figure 5—7 Path Expression

5-14

_ _ _ _ _  

—-V V _ i
- ——  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---- — -- - S



- —V-
~~~~~ 

V-VV_-V~SV V~~~~~SV~ V
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ —,. _~~~~~~~~~~~~ - .~~~~~~ _ - ~~~~--~~ - - - -

Subsystem size , comp l exity , project organization , team structures ,
productivity figures, and turnaround time on the development computer
were considered in representing the l evel of effort required to perform
each of the activities. These variables were calibrated to the past

development. They were not all controlled by input parameters .

For example , the considerations tha t were taken into account to model the
Coding and Debug (COB) process for Subsystem 1 (SS1) are listed below :

• Each subsystem or CPCI was developed by a team during this
project. The teams were a modification of chief programer

teams and had a hierarchical organization of a system engineer
as team leader , one or more ana lysts , and one or more prograniners .
This team structure was utilized In the model for the desi gn
processes , as well as the coding processes . Eventua lly we would

want to have available other team structures whic h could be iden-

tified parametrically or provide the capability to Impose a team
structure parametrically. For the prototype , only one team struc-

ture was model l ed.

• The sizing of the team was accomplished by considering size of
the subsys tem, complexity of the subsystem , and historical data
of turnaround time on the development computer and productivity

figures. These variables eventually will be parameters in the
formulation of personnel-type requirements . Experience l evels
for the various personnel types were not taken into account In
the prototype, and only the four types of personnel mentioned
before were modelled . The sizing calculation for subsystem 1
resulted in a team of a system eng ineer , two analysts , and two
,roqrI~ iers .

• “
~~. d.qre. to which the quality of the product resulting from an
~~~~ ‘ v ’ t y  i ff ec ted subsequent phases was only modelled at a gross
.,. ‘ ~‘~ 1$~~nq the problem report rate to size the maintenance

5— 15

—

The processes were parametric , i n tha t resource levels and ti m i ng var iab l es
were parameters, and used as library functions in the simulat ion; however ,

further extensions are required before they could be used generally.

The input and output capabilities of the prototype simulator were very

l imited . A minimum number of inputs were required ; most variables were
incorporated in the process descriptions. The output capabilities were
restricted to those provided by PEPI , SI MTRAN , an d GASP IV. No additi ona l
ou tput repor ts were genera ted . The ou tputs are i l l u s trated in the nex t
section.

5. 6 RESULTS OF THE EXPERIMENT
This experiment was performed in a calibrati on mode. There were records
ava ilable from a past development effort performed at Genera l Electric
for the A i r Force , as was descr ibed i n Secti on 5. 4, and the simulation
was based on the historical data available. The manner in which this
cal i bration was performed was to use this data from the development
project to drive the simulation in an effort to produce results that
approximated other data from the project. At a suniuary l evel , the
resul ts of our simulation are shown in Figure 5-8. The line labelled
“ACTUAL” is the graph of the data from the actual Air Force project
superimposed on the graphs of the simulation results . Cursory examina-
tion of the data shows a clear correspondence between observed and
experimental val ues.

Comparison of the graphs in Figure 5-8 shows that there is a 4.98% error
between the areas underneath the observed and experimental data curves .
These results are considered quite acceptable. Some of the peaks of
spikes seen in the actua l da ta can be attributed to five-week fiscal
mont hs, which plotted at a granularity of one month causes higher man-
power expenditures to be illustrated .

5-16

-V ~~~~~~~~~L -- ~~
.--—

~
—------------ - --—— - ~~~~~~~~~~~~~~~~~~~~~~

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~ 

~~~~



- V ~-V S

[SYSE W~7L4VI ~~ G 
~~~~~ 

______ ______

[~CTUAL ILANL T ~ 2cx~J J QA wi~iiJ

AREAS:

ACTUAL: 417.425
SIMULATION: 396.625

36
- 4.98% ERROR

34
32
30

-

28

26

_

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
MONTHS

Figure 5-8 Experiment Resul ts

5— 1 7

A .
_ _ _

~

~~~
- ..



~~~~~~~~~~~~~~ 
V~ _~~~~~~~~~~;

~~~~~~~~~~~~~~~~~ ~V 
~_~~~ __ ~~~~~~~~~~~~~~~~ - -

~;~~~~~j
-V - - - -~~ ---~ -

In addition to these plots , resource utilization and queue statistics
are provided and also a dynamic trace of the complete simulat ion . These
data are ava ilable for performing detailed analyses of bottlenecks in
the development and impacts for changes .

p
5-18 

. 

- 

V_ -V-V~~~-V~ -~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V S ~ VS .V S.~~~~~~~~~~ V V _ _ V  

~

II

lI1

SECTION 6

CONCLUSIONS

6.1 SUI4IARY OF SIGNIFICANT RESULTS
Our research has covered the spectrum from concept formation to analysis
to experimentation . First, we addressed the probl em of how to apply

simulation techniques to study the software development process. Then ,
we investigated what the characteristics of software developments are,
based on the “world-view” establ ished by our simulation approach. Final -
ly, we studied when our modelling methodology is valid by learning how to
design simulation experiments based on our modelling approach. Table 6-1
sumarizes our major accomplishments , and indicates where we go from here.

— Table 6-1

Conclusions Matrix

ACCOMPLISHED FUTURE

( 1) SIMULATION APPROACH
Combined activity-product Identification of simulation
model forms conceptual variables , model rules , model
basis. inputs and outputs .

(2 ) PROCESS DECOMPOSITION
Activity-product network Detailed specification of
demonstrates practical activities , products, factors ,
appl ication , and resources.

(3) SIMULATOR DEVELOPMENT
Simulator prototype Data collect ion to support
demonstrates experimental full experiment.
feasibil ity.

6—1 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ V-V V_ -


— - - — — - - -

6.2 EVALUATION OF EXPERIMENT
The experiment provided not only a demonstration of some of the modelling
concepts and approaches established during this study bu t a l so , provided
the basis for evaluation of our ideas. The accuracy of the results , sub-
stantiating the ability to calibrate the model , were very promising . The

use of a process-oriented simulation language and the path expression
interface to the simulator provided a very easy-to-use and flexible simu-
lation tool . This is important from two viewpoints . First, the tool , to

be effective, must be planner/analyst-oriented rather than simulation-
oriented . The path expression language provides an automated way to lay-
out a PERT-like plan of the network of activities to be performed. The

underlying process-oriented simulator , driven by the path expression , then
provides modelling capabilities far more powerful than the probability
distributions for schedules provided in a PERT s~’stem .

The ease of selecting and interconnecting the activities is a key concept
because it facilitates tailoring the model to the specific development.

Anal ytic techniques , in comparison , are developed based on past develop-
ments without differentiating between projects. For example , there is no
differentiation between a project that uses simulation during design and

one that does not, or between a project that has a formal requi rements
ana lysis phase, one that does not. The analytic techniques tend to be a
gross approximation of the software development. The activity models

allow tailoring of the model to the actual development. Only those acti-
vities to be performed duri ng the development are selected .

The addition of activity models which are not in the library of generic
activity models is easy. In the prototype simulator this was accomplished
by writing a process using SIMTRAN and Including its reference in the path
expression. Inclusion of acquisition office activities could be accom-
plished in this manner.

6-2

V ~VV V V ~~
—. ~~ L~~~~~~ ’-~

- -

- -~~~~~ -

The framework provided by the model allows experimentation/evaluation of
the Ind ividual activity models. The framework should also aid the estima-
tion process.

The simulation run time and cost was insignificant. The simulation tools
developed and utilized have evolved over a number of years, and are oriented
specifically to modelling computer system applications.

The concept of activity/product progression models of the activities shows
promise in accounting for quality and documentation considerations in the
software development process. However, they were not modelled in the
experiment in enough detail , or for all of the activities to provide a
thorough eval uation.

A true test of the model would be to use it as a prediction tool and then
as a status assessment tool during an actual development. Once in the
development, the model could be used to evaluate progress by substituting

actual data at the end of a phase into the model and conduct a simulation.
The impact on the rest of the project p lan , based on the actuals at that
time , would be provided by the simulator.

Based on the experiment results and the modelling concepts that have
evolved, we conclude that it is feasible to model the software development
process. In add ition , the insight gained from the model can have signifi-
cant benefits to the management of the development effort. These benefits
will be derived from a better understanding of the software development
process through research and eval uation using the model of development
techniques, organizations , and methodologies. And1 the benefits w i ll be
derived from the use of the model as an automated tool supporting cost
estimation (planning), and project progress assessment (control). In
order to real ize those benefits, some additional research tasks must be
conducted. These tasks are identified in the next paragraph.

(
6—3

- - - ~~

- - Vs ~~~
V - - V-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -VS

6.3 TOPICS FOR FURTHER INVESTIGATION

The topi cs for further inves tigation fall into three areas: (1) development

of the simulator; (2) experimentation and demonstration of the simulator;
and , (3) further basic research.

The prototype simulator developed during this study was constructed to
demonstrate our approach to modelling the software development process,
and to assist in the assessment of the feasibility of th€ approach. In

addition , extensibility was a major design goal of the prototype; i.e., we
attempted to develop the prototype so that we could expand it into a full-
capability simulator. The development of the Path Expression Parser/Inter-
preter, based on the SIMTRAN simulation language , provides the core of the
future simulator. The expansion required includes development of the
library of activity models and enhancement of the input/output capabilities.

The activity models used in the prototype were not model l ed at a very
detailed l evel or were not as parametric as required for general use. Al so,

not all activities identified In Section 3 were modelled . The input/output
capabilities of the prototype relied on the plotting and histogram output
capabilities of GASP IV , the standard simulation reports of SIMTRAN , and
the developed path expression parser for input. The path expression

capabilities need to be expanded to allow more network expressions to be
modelled , and management-oriented reports need to be generated.

Once the simulator has been developed , we feel it should be cal ibrated in
an Air Force Systems Programs Office environment. This calibration would
involve modelling past developments and turning the model to the results

of those developments. After calibration , the simulator should be utilized
during an actual development in an experimental model ; i.e., during the

use of the simulator , evaluation of its utility should be conducted .

Further basic research is required also . Prior to the development of the

full complement of the library of activity models , further research into

modelling some of the activities at a greater l evel of detail is needed.

(- t

6-4

_ V ~~
- --~~~~~

- - —_—-.—~ ~~~~~~~~~~~~~~~~ — -. -
-

— 1

This includes , not only develop ing the models, but supporting that
- I ~~ ‘ development wi th data collection during actual software development projects.

-

I

t 6-5

—V ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ — —5-—— _________________________________
Vs

V
~~~~~~~~~~~~~~ 

V_5_5S-V-V ~V_V-V - 
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V - ~~~~~~~ Vs -
~~~

S— V -
~~

V -5 ~~~ -5~~~~_V  ~~~~~~~~~~~~~~~~~~~~~~ - 

I
SECTION 7

BIBLIOGRAPHY

The Bibl iography contains references listed alphabetically according to
four categories:

. Software Project Management (Models);

• Simulation and Modelling ;

• Cost Estimation; and ,

• Others.

SOFTWARE PROJECT MANAGEMENT (MODELS)

ANA l 76 “An Air Force Guide to Software Documentation Requirements” ,
-

~ W.L. Schoeffel , MITRE Corpora tion , June 1976.

ARON 74 Aron , J.D. , The Program Development Process, Addison-Wesley
Publishing Company , Menlo Pa rk , California , 1974.

BELA 76 Belady , L.A. , et al., “A Model of Large Program Development” ,
IBM Systems Journal , Vol . 15, No. 3, 1976.

BOSC 78 Bosch, J.A., Briggs, P., “Software Development for Fly-by-Wire
Flight Control Systems” , GE TIS , 1978.

CARR 75 Carrow, J., et al., “Workbook on Structured Programing”,
NTIS , February 1975.

CAUD 77 Caudili , R., “Understanding the Development Life Cycle” , —

1977 National Computer Conference.

COSG 78 Cosgrove, 0., “ESO Software Acquisition Process Model Concept
and Feasibility ”, MITRE Working Paper-2l981 , November 1978.

ELYE 77 Ely, E. H . , “Software Management: A Dynamic Approach” , Defense
Systems Management College , May 1977.

GEHR 76 Gehr lng , P.., “A Quantitative Analysis of Estimating Accuracy
in Software Development” , NTIS AD A-047 674, August 1976.

GORD 78 Gordon, S.C., “The Development of a Computer Software Manage-
ment Discipline ”, Proceedings of the 1 978 National Aerospace
and Electronics Conference, 1978.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -V-  
___ 5___1 ----



_________________________________________________ 
- —- -- -

V - -

-~V~SVV ~~~~~~~~~~~~ -~~ 
-

HAGA 75 Hagan , S.R., et al. “An Air Force Guide for Monitoring and
Reporting Software Development Status”, MITRE Corporation ,
September 1975.

HIEM 75 Hieman, P., Program ing Methodology -- Lec ture No tes i n
Computer Science, Springer -- Verlang , New Yor k, 1975.

KOLA 76 Kolashes ki , R.F., “An Investigation into the Feasibility of
Using the Leontief Input -- Output Model in the Quantitative
Management of Computer Programing”, USASCS-AT-76-08, 1976.

LIFE 74 “Life Cycle System Management Model s for Army Systems” ,
Draft DA Pamphlet No. 11-25 , Apr il 1974.

LOVE 76 Love , Tom, “A Rev iew of the Var iables Wh ich Infl uence the
Software Development Process” , GE TIS 761 SPOO1 , 28 June 1976.

LOVE 77 Love , 1., F i tzs imons , A., “A Survey of Software Practitioners
to Identify Critical Factors in the Software Development Process” ,
GE IT S 771SP002 , 25 January 1977.

METZ 73 Metzger, P.-, Managing A Programing Project, Prentice-Hall ,
Inc. , Englewood Cl iffs, New Jersey, 1973.

PODO 77 Podolsky, J.L. , “Horace Bu i l ds a Cycle ”, Datama t ion , Nov . 1977.

SACK 70 Sackman, H., Man-Computer Probl em Solving, Auerback Publishers ,
Inc ., Pr inceton , New Jersey, 1970.

SCOT 75 Scott, R., Sininons, 0., “Predicting Programing Group Producti-
vity - A Coninunications Model” , First Annual Software Engineering
Conference. 1975.

SOFT 77 “Software Phenomenology” , U.S. Army Institute for Research in
• Management Information and Computer Science, Work ing Papers of

the Software Life Cycle Management Workshop, A i rl ie House ,
VIrg in ia , 21-23 August 1977.

TURN 76 Turn , R., Dav is, M., Reinstedt, R.., “A Management Approach to
the Development of Computer-Based Systems”, International
Conference on Software Enaineerino, October 1976.

WILL 76 Willworth , N.E. , “Software Data Col lection Study: Survey of
Project Managers”, RADC-TR-76-329, December 1976.

7-2

_ _ _ _ _ _ _  ~~~ •_ -



SIMULATION AND MODELLING

COOK 68 Cook , W.H., “Decision Analysis for Product Development~’, IEEE
Transactions on Systems Science and Cybernetics , Vol . SSC-4 ,
No. 3, September 1968.

GREE 67 Greene, James H.- , Operations Planning and Control, Richard D.
Irw in , Inc., 1967 .

HABE 75 Habermann , A.N., “Path Expressions ” , Department of Computer
Science , Carnegie—Mellon University , Pittsburgh, PA , June 1975.

MA RM 77 Ma hmoud , M.S., “Multilevel Systems Control and Applications:
A Survey” , IEEE Transactions on Systems. Man and Cybernetics ,
Vol . SMC—7, No. 3, March 1977.

MALC 62 Malcolm , D., “System Simulation -- A Fundamental Tool for
• Industrial Engineering ”, S imula tion i n Soc ial Sc ience , Prentice-

Hall , Inc., Eng l ewood Cl i ffs , New Yor k, 1962.

MCCA 76 McCall , J., Seyfarth, I., Wong, G., “SIMTRAN User ’s Gu ide ” ,
Software Engineering Laboratory Standard No. 46, October 1 976.

MCCA 78 McCall , J., “Information and Data System Simulator ” , 1978
Suniner ComDuter Simulation Conference. July 1978.

PRIT 74 Pritsker, A.A.B., The GASP IV Simulation Language. John Wiley
& Sons , Inc ., New York , 1974.

RIDD 76 RIddle , W.E., “An Approach to Software System Modelling ,
Behavior Specification and Analysis ” , RSSM/25 , Dept. of
Computer and Comunication Sciences, Univ. of Michigan ,
July 1976.

SHAW 78 Shaw , A.C., “Software Descriptions With Flow Expressions” ,
IEEE Transactions of Software Eng Ineerin~. Vol . SE-4, No. 3,
May 1978.

SMAL 68 Smaliwood, R.D., “A Decision Analysis Of Model Selection ” ,
IEEE Transactions on Systems Science and Cybernetics,
Vol . SSC-4, No. 3, September 1968.

WILL 74 Wil l is, R., “Structured Model Development Techniques”,
Symposium on the Simulation of Computer Systems, NBS , June 1974 .

WONG 75 Wong, G., 14-Call , J., Seyfarth , 1., “Computer Network Simula-
tion ” , GE US 75C1S07, December 1975.

7—3 

~~~~--5--— _______


5--
-—,

WONG 78a Wong, G.Y., “Com puter System Simula tion With GASP IV ” , 78C1SO09,
General Electric , June 1978.

WONG 78b Wong , G.Y. , “Design Methodology for Computer System Modelling
Tools ” , paper presented at Symposium on Modelling and Simulation
Methodology , Rehove t, Israel , August 1 978.

COST ESTIMATION

ARON 69 Aron , J.D., Estima ti ng Resources for Lar ge Program ing Systems,
IBM , 1969.

ASOF 77 “A Software Resource Macroestimating Procedure ” , HQ, Department
of the Army, DA Pamphlet No. 18-8, February 1977.

AUTO 78 “Automatic Data Processing Resource Estimating Procedures (ADREP)” ,
Plann ing Research Corpora tion , PRC R—l527 , August 1 970.

BOUR 78 Bourdon , G.A., Duque tte, J.A., “A Computerized Model for Esti-
mating Software Life Cycle Costs” , ESD—TR-77-253, April 1978.

CLAP 76 Clapp, J., “A Review of Cost Estimation Methods” , MITRE Corpora-
tion , ESD—TR— 76—27l , August 1976.

COST 72a “Cost Analysis: Program Breakdown Structure and Codes” , AFSCM 1 73-4,
Department of Air Force, November 1972.

COST 72b “Cost Estimating Procedures” , Department of the Air Force, HQ,
Air Force System Coninand , AFSCM 173-1 , 17 April 1 972.

DEVE 76 Devenny, T-.J., “An Exploratory Study of Software Cost Estimating
at the Elec tron ics Systems Div ision ” , NTIS , AD—A 1 030—l62, July 1976.

DOTY 77 Doty, D.L. , Nelson , P.J. , Stewart, K.R . , “Software Cost Es tima tion
Study Guidel ines for Improved Software Cost Estimation ” , RADC-
TR-77-220, Vol . I and Vol . II, August 1977.

FARR 64 Farr , Leonar d, et al . , “Cost Aspects of Computer Programing
for Conmiand and Control ” , System Development Corporation , NTIS
AD 430259, 13 January 1964.

FIND 74 Findley, R.A., “Computer Software Development Costs, Predictable
or Not” , NTIS AS-A-O39 730, May 1974.

FINF 78 F infer , M., Mi sh R. , “Software Acqu isition Management Guidebook:
Cost Estimation and Measurement”, ESD-TR-78-l40, March 1978.

7-4

~

— - - -V - - -V - 5 - - -V--V5 -_ V s _~~~~~~~~~~~~~~~~ V S 5- _ _ _

FLEI 66 Fle i shman , 1., “Curren t Results from the Analysis of Cost Data
for Computer Program ing” , System Development Corporation ,
AD 637801, August 1 966.

GEHR 76 Gehring , Jr., Lt. Col . Philip F., USAF , “Improving Software
Development Estimates of Time and Cost” , Secon d In terna ti onal
Con ference on Software En gin eer ing, San Franc i sco , 13 October

-
1976.

GOVE 74 “Government/Industry Software Sizing and Costing Workshop --
Sumary Notes ” , USAFESD , 1-2 October 1974 .

GRAV 76 Graver , C.A., et al., “Cost Reporting Elements and Activity Cost
Tradeoffs for Defense System Software ” , GRC , ESO TR , November 1976.

HANS 76 Hansen , D.L., “Software CER Feasibility Study ” , HQ, SAMSO , Cos t
Ana - ysis Division , December 1976.

JUNK /8 Junk , W., McCa ll, J., Pu tnam , L., Wal ters , G., “Survey of Soft-
ware Cost Es timation Tec hn iq ues ” , GE TIS 78CISO 1O, May 1 978.

LABO 66 LaBolle , V., “Development of Equations of Estimating the Costs
of Computer Program Produc tion ” , System Develo pmen t Cor pora ti on ,
AD 637 760, June 1966.

MANA 71 “Management Information Systems: Handbook of ADP Resource
Estimating Techniques ” , US Army, TB 18 19-3 , Augus t 1971.

MORI 74 Mor in, L.H. , “Estimation of Resources for Computer Programing
Projects” , University of North Carolina , 1974.

NELS 66 Nelson , E.A., “Methods of Obtaining Estimates of Computer
Program ing Costs: A Taxonomy” , System Deve l opmen t Cor pora tion ,
AD 665 478, August 1 966.

NELS 67a Nelson , E.A., “Mana gement Handboo k for the Es tima ti on of Computer
Programing Costs” , System Develo pment Cor pora tion , AD 648 750,
20 March 1967.

NELS 67b Nelson , E.A., et al., “Cost Reporting for Development of
Information Processing Systems”, System Development Corporation ,
Apr i l 1967.

NORD 77 Norden , Peter V. , “Project Life Cycle Modeling : Background and
Appl ication of the Life Cycle Curves ” , Sof tware L ife Cycle
Management Workshop, Airlie House, 21-23 August 1977.

L~. .~~~~~
. r- •_- Vs .

V A SIMULATI ON MODELING APPROACH TO (ZCCRSTANOING flE SOFTWARE

9 -79
I S

~

L

__

I ~~ L~ I-’ ~~~I.U L.
_ _ _

L. L. :.‘

~
18

1.25 14 io
-

~~~~~~~~~

\ ‘  ~,\ ‘



ORTH 77 Orth P.J., “Development of On-Line Software Package for
Calcula ting Acquisition Costs” , NTIS AD-A052 714, Apr il 1977.

PIET 70 Pietrasanta , A.M.., Resource Analys i s of Computer Program System
Development on the Management of Computer Programing, Auerback
Publ ishers, Princeton , New Jersey, 1970.

PUTN 77a Putnam, Lawrence H., “The Influence of the Time-Difficulty
Factor in Large Scale Software Development” , IEEE COMPCON 1977,
9 September 1977.

PUTN 77b Putnam, Lawrence H., Wolverton , Ray W., “Quantitative Manage-
ment: Software Cost Estimating” , IEEE Comouter Society Tutorial,
Computer Software and Application Conference, 8-11 November 1977.

PUTN iSa Putnam, Lawrence H. , “Information Required to Support Sizing ,
Estimating and Control of Software Life Cycle” , COMPCON 1978,
2 March 1978 and AIIE , 3 April 1978.

PUTN 78b Putnam, L.H., “Measurement Data to Support Sizing Estimating and
Control of the Software Li fe Cycle ” , GE internal paper , Jan. 1978.

REFE 77 “Reference Manual - PRICE Software Model ” , RCA PRICE Systems,
Cherry Hill , New Jersey, December 1977.

SCHN 77 Schneider, ~J . ,  “A Preliminary Calibration of the RCA PRICE-S
Software Cost Estimation Model ” , NTIS AD-A046 808, September 1977.

SCHN 78 Schneider, V., “Prediction of Software Effort and Project
Duration -- Four New Formulas”, ACM SIGPLAN Nptices, Vol . 13 ,
No. 6, June 1978. —

SMIT 75 Smith, R., “Estimating Software Project Resource Requirements”,
(Structured Programing Series, IBM) , RADC-TR-74—300, Vo l . XI ,
January 1975.

STEP 76 Stephenson, W.E., “An Analysis of the Resources Used in the
SAFEGUARD System Software Development” , International Conference
on Software Engineering, October 1976.

WALS 77 Wai ston, C.E~, Fel ix , C.P., “A Method of Prograniiiing Measurement
and Estimation”, IBM Sistems Journa l, No. 1 , 1977.

WEIN 66 We inwurm, G.F. , “Data Elements for a Cost Reporting System for
Computer Program Development” , System Development Corporation ,
AD 637 804, August 1966.

7-6 



— ~~~~ ~~_t~~ 
-
~ ~

-
~——. ~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

WOLV 74 Wnlverton , Ray W., “The Cost of Developing Large-Scale Software”,
IEEE Transactions on Computers, Vol . 23, No. 6, 1974 .

OTHERS

AIRF 66 “Air Force ADP Experience Handbook” , Planning Research Corpora-
t ion, December 1966.

BLAC 77 Black , Katz, Gray, Curnow , “BCS Software Production Data”,
RADC-TR-77-116, March 1977.

BOLE 76 Bolen, N., “Air Force Guide to Contracting for Software Acquisi-
t ion” , AD-A020 444, January 1976.

BROO 75 Brooks , F.P., The Mythical Man-Month , Addison-Wesley Publishing
Company, Reading, Mass., 1975.

CARR 75 Carrow, J., Reaser , J., “Interactive Programing : Suninary of an
Evalua tion and Some Management Considerations” , USACSC-AT-74003,
March 1975.

DODD 76 “DOD Defense System Software Management Program” , OASD , March j
1976.

DONE 77 Donelson, “Project Planning and Control”, Datamatlon , 1977 .

EMBE 77 “Embedded Computer Resources and the DSARC Process - A Guide-
book” , OSD, 1977.

FIND 75 “Findings and Recomendations of the Joint Logistics Comanders” ,
Software Rel iability Working Group, November 1975.

FINF 76 Finfer , M., “Software Data Col l ection Study: Data Requirements
for Productivity and Reliability Studies” , RADC-TR-76-329,
December 1976.

JONE 78 Jones , T.C., “Measuring Programing Quality and Productivity ” ,
IBM Systems Journal , Vol . 17, No. 1 , 1978.

KATZ 76 Katzan, H., Systems Design and Documentation, Van Nostrand
Reinhold Co., New York 1976.

KIRK 73 KIrk , F.G., Total System Development for Information Systems,
John Wiley & Sons, New York , 1973.

7—7

______ —.~- ~-- ---- .
~ ~~~~~~~~~~~~~~~~~~ 

- 
_____,

~

- - .  -~~~~~ —c- ~~---—-— --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— - --.--, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

KOSY 74 Kosy, D., “Air Force Comand and Control Information Processing
In the 1980 ’s: Trends In Software Technology ” , Rand, 1974.

LIAS 74 LIas , E.J., “On-L ine Versus Batch Costs”, Datamatlon, Dec. 1974.

LIEN 75 Llentz, B.P. , Swansco , E.B., Tomplins , G.E . , “C haracter ist ics
of Application Software Maintenance ” , Graduate School of Manage-
ment, University of CA at Los Angeles , partially sponsored under
ONR N00014-75-C-0266, 1975.

MANA 76 “Management of Computer Resources in Major Defense Systems” ,
Department of Defense Directive No. 5000.29 , April 1976.

MCCA 77 McCall , J., Richards , P., Wa l ters , G., “Factors in Software
Quality ” , RADC TR-77-369, November 1977.

MYER 78 Myers, Ware, “The Need for Software Eng i neering ” , Computer,
IEEE Computer Society, Vol . II , No. 2, February 1978.

NATO 69 “NATO Science Coninittee Report” , January 1969 .

NAVA 76 NAVAIRINST 5230.5, “Responsibility and Requirements for Prepara-
tion of Software Life-Cycle Management Plans (S~CMP) ” , 21 July
1976.

NELS 77 Nelson , R., “RADC Data Repository ”, NASA/GODDARD Software
.En~Jneering Workshop, September 1977.

PARI 76 Pariseau, R.J., “Improved Software Productivity for Military
Computer Systems through Structured Programing” , NADC-76044-50,
March 1976.

PROC 73 Proceedings of a S~inposium on the High Cost of Software, Sept.1973.

PROC 75 Proceedings of the International Conference on Reliabl e Soft-
ware, 1975.

SCOT 74 Scott, R., S imons , 0., “Prograniner Productivity and the Delphi
Techniques ” , Datamation, May 1974.

SOFT 75 “Software Acqu isition Management Guidebook: Regulations , Speci 

-

_______

fications, a ’d ctandards”, MITRE Corporftlon, October 1975. 

THAY 75 Thayer , l.A., “Understanding Software Through Empirical Rellabi-
lity Analys is” , Proceedings of the 1975 National Computer
Conference, 1975.

7-8

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ .~ .—.-—- — — ~-- -.--- .~~~~~ .-~- —



- ~~~~~~~~~ - —-- - - ~~~~~~~~~~~~~~~~~~~~ - ~~~~~~

WALT 78 Walters, G., McCall , J., “The Development of Metrics for
Software R&M” , Proceedings of Annua l Reliability and Main -

- 

- tainability Symposium, Januar~~T~7a.

~I

(2’
7-9

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - A


